Skip to main content

Advertisement

Log in

Microbial steroid transformations: current state and prospects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Studies of steroid modifications catalyzed by microbial whole cells represent a well-established research area in white biotechnology. Still, advances over the last decade in genetic and metabolic engineering, whole-cell biocatalysis in non-conventional media, and process monitoring raised research in this field to a new level. This review summarizes the data on microbial steroid conversion obtained since 2003. The key reactions of structural steroid functionalization by microorganisms are highlighted including sterol side-chain degradation, hydroxylation at various positions of the steroid core, and redox reactions. We also describe methods for enhancement of bioprocess productivity, selectivity of target reactions, and application of microbial transformations for production of valuable pharmaceutical ingredients and precursors. Challenges and prospects of whole-cell biocatalysis applications in steroid industry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd-elsalam IS, Salam LA, Abd-Elhady SA (2010) Optimization of sugar cane phytosterols bioconversion using Arthrobacter rubellus. J Appl Sci Res 6(9):1334–1339

    CAS  Google Scholar 

  • Ahmad S, Garg SK, Johri BN (1992) Biotransformation of sterols: selective cleavage of the side chain. Biotechnol Adv 10:1–67

    Article  CAS  Google Scholar 

  • Ahmed EM (2007) Production of 11α-hydroxyprogesterone using Aspergillus terreus immobilized on polytetrafluoroethylene. Braz J Microbiol 38:224–229

    Article  Google Scholar 

  • Al-Aboudi A, Mohammad MY, Musharraf SG, Choudhary MI, Atta-ur-Rahman (2008) Microbial transformation of testosterone by Rhizopus stolonifer and Fusarium lini. Natl Product Res 22:1498–1509

    Article  CAS  Google Scholar 

  • Amin HAS, El-Hadi AA, Mohamed SS (2010) Immobilization of Mycobacterium sp. NRRL B-3805 cells onto radiation crosslinked PVA/PVP hydrogels for production of androstenones from beta-sitosterol. Austral J Basic Appl Biosci 4(8):2196–2205

    CAS  Google Scholar 

  • Andhale MS, Sambrani SA (2006) Cholesterol biotransformation in monophasic systems by solvent tolerant Bacillus subtilis AF 333249. Indian J Biotechnol 5:389–393

    CAS  Google Scholar 

  • Andor A, Jekkel A, Hopwood DA, Jeanplong F, Ilkoy E, Konya A, Kurucz I, Ambrus G (2006) Generation of useful insertionally blocked sterol degradation pathway mutants of fast-growing mycobacteria and cloning, characterization, and expression of the terminal oxygenase of the 3-ketosteroid 9α-hydroxylase in Mycobacterium smegmatis mc2 155. Appl Envir Microbiol 72(10):6554–6559

    Article  CAS  Google Scholar 

  • Andryushina VA, Druzhinina AV, Yaderets VV, Stytsenko TS, Voishvillo NE (2010) 7α-hydroxylation of steroid 5-olefins by mold fungi. Appl Biochem Microbiol 46:69–74

    Article  CAS  Google Scholar 

  • Andryushina VA, Druzhinina AV, Yaderets VV, Stytsenko TS, Voishvillo NE (2011) Hydroxylation of steroids by Curvularia lunata mycelium in the presence of methyl-β-cyclodextrine. Appl Biochem Microbiol 47:42–48

    Article  CAS  Google Scholar 

  • Angelova B, Fernandes P, Cruz A, Pinheiro HM, Mutafov S, Cabral JMS (2005) Hydroxylation of androstenedione by resting Rhodococcus sp. cells in organic media. Enz Microb Technol 37(7):718–722

    Article  CAS  Google Scholar 

  • Angelova B, Fernandes P, Spasova D, Mutafov S, Pinheiro HM, Cabral JM (2006) Scanning electron microscopy investigations on bis(2-ethylhexyl)phthalate treated Mycobacterium cells. Microsc Res Tech 69(8):613–617

    Article  CAS  Google Scholar 

  • Antunes LC, Davies JE, Finlay BB (2011) Chemical signaling in the gastrointestinal tract. F1000 Biol Rep 3:4

    Google Scholar 

  • Arnell К, Johannisson К, Lindholm J, Fornstedt T, Ersson B, Ballagi A, Caldwell A (2007) Biotechnological approach to the synthesis of 9α-hydroxylated steroids. Prep Biochem Biotechnol 37:309–321

    Article  CAS  Google Scholar 

  • Asselin-Labat M-L, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ, Visvader JE (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465:798–802

    Article  CAS  Google Scholar 

  • Atrat P, Hösel P, Richter W, Meyer HW, Hörhold C (1991) Interactions of Mycobacterium fortuitum with solid sterol substrate particles. J Basic Microbiol 31:413–422

    Article  CAS  Google Scholar 

  • Avramova T, Spassova D, Mutafov S, Momchilova S, Boyadjieva L, Damyanova B, Angelova B (2010) Effect of Tween 80 on 9α-steroid hydroxylating activity and ultrastructural characteristics of Rhodococcus sp. cells. World J Microbiol Biotechnol 26:1009–1014

    Article  CAS  Google Scholar 

  • Bäckström T, Ragagnin G (2008) The use of pregnane and androstane steroids for the manufacture of a pharmaceutical composition for the treatment of CNS disorders. Patent WO/2008/063128

  • Bäckström T, Haage D, Löfgren M, Johansson IM, Strömberg J, Nyberg S, Andréen L, Ossewaarde L, van Wingen GA, Turkmen S, Bengtsson SK (2011) Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons. Neuroscience 15(191):46–54

    Article  CAS  Google Scholar 

  • Baker ME (2011) Origin and diversification of steroids: co-evolution of enzymes and nuclear receptors. Mol Cell Endocrinol 334:14–20

    Article  CAS  Google Scholar 

  • Banerjee R, Vats P, Dahale S, Kasibhatla SM, Joshi R (2011) Comparative genomics of cell envelope components in mycobacteria. PLoS One 6(6):e19280

    Article  CAS  Google Scholar 

  • Bartmańska A, Dmochowska-Gładysz J, Huszcza E (2005) Steroids’ transformations in Penicillium notatum culture. Steroids 70:193–198

    Article  CAS  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 24(1):128–145

    Article  CAS  Google Scholar 

  • Bhosale S, Saratale G, Govindwar S (2006) Biotransformation enzymes in Cunninghamella blakesleeana (NCIM-687). J Basic Microbiol 46:444–448

    Article  CAS  Google Scholar 

  • Bie S, Lu F, Du L, Qiu Q, Zhang Y (2008) Effect of phase composition on the bioconversion of methyltestosterone in a biphasic system. J Mol Catal B: Enzym 55:1–5

    Article  CAS  Google Scholar 

  • Brzostek A, Sliwinski T, Rumijowska-Galewicz A, Korycka-Machala M, Dziadek J (2005) Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis. J Gen Microbiol 151:2393–2402

    CAS  Google Scholar 

  • Brzostek A, Pawelczyk J, Rumijowska-Galewicz DB, Dziadek J (2009) Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J Bacteriol 191:6584–6591

    Article  CAS  Google Scholar 

  • Bureik M, Bernhardt R (2007) Steroid hydroxylation: microbial steroid biotransformations using cytochrome P450 enzymes. In: Schmid RD, Urlacher VB (eds) Modern biooxidation: enzymes, reactions and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Callewaert F, Boonen S, Vanderschueren D (2010) Sex steroids and the male skeleton: a tale of two hormones—a review. Trends in Endocrinol Metabol 21(2):89–95

    Article  CAS  Google Scholar 

  • Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, Zhao R, Okamoto S, JrWR J, Eltis LD, Mohn WW (2009) Mycobacterial cytochrome P450 125 (Cyp125) catalyzes the terminal hydroxylation of C27-steroids. J Biol Chem 284:35534–35542

    Article  CAS  Google Scholar 

  • Capyk JK, Casabon I, Gruninger R, Strynadka NC, Eltis LD (2011) Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. J Biol Chem 286(47):40717–40724

    Article  CAS  Google Scholar 

  • Carballeira JD, Quezada MA, Hoyos P, Simeó Y, Hernaiz MJ, Alcantara AR, Sinisterra JV (2009) Microbial cells as catalysts for stereo selective redox reactions. Biotechnol Adv 27(6):686–714

    Article  CAS  Google Scholar 

  • Carpova-Rodina NV, Andryushina VA, Yaderetz VV, Druzhinina AV, Stytsenko TS, Shaskol’skiy BL, Lozinsky VI, Duc Huyc L, Voishvillo NE (2011) Transformation of Δ4-3-ketosteroids by free and immobilized cells of Rhodococcus erythropolis actinobacterium. Appl Biochem Microbiol 47(4):386–392

    Article  CAS  Google Scholar 

  • Carvalho F, Marques MPC, de Carvalho CCCR, Cabral JMS, Fernandes P (2009) Sitosterol bioconversion with resting cells in liquid polymer based systems. Bioresour Technol 100:4050–4053

    Article  CAS  Google Scholar 

  • Cassetta A, Büdefeld T, Lanisnik Rizner T, Kristan K, Stojan J, Lamba D (2005) Crystallization, X-ray diffraction analysis and phasing of 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus. Acta Crystallogr F: Struct Biol Cryst Commun 61:1032–1034

    Article  CAS  Google Scholar 

  • Cauet G, Degryse E, Vico P, Lathe R (2006) Method for preparing steroids modified by yeast fermentation. US Patent 7,033,779

  • Chang JC, Miner MD, Pandey AK, Gill WP, Harik NS, Sassetti CM, Sherman DR (2009) igr genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol 191:5232–5239

    Article  CAS  Google Scholar 

  • Chaudhari PN, Chaudhari BL, Chincholkar SB (2010) Cholesterol biotransformation to androsta-1,4-diene-3,17-dione by growing cells of Chryseobacterium gleum. Biotechnol Lett 32:695–699

    Article  CAS  Google Scholar 

  • Chen K, Tong WY, Wei DZ, Jiang W (2007) The 11β-hydroxylation of 16,17α-epoxyprogesterone and the purification of the 11β-hydroxylase from Absidia coerulea. Enzyme Microb Technol 41(1):71–79

    Article  CAS  Google Scholar 

  • Chiang YR, Ismail W, Müller M, Fuchs G (2007) Initial steps in the anoxic metabolism of cholesterol by the denitrifying Sterolibacterium denitrificans. J Biol Chem 4(282):13240–13249

    Article  CAS  Google Scholar 

  • Choudhary MI, Sultan S, Khan MT, Yasin A, Shaheen F, Atta-ur-Rahman (2004) Biotransformation of (+)-androst-4-ene-3,17-dione. Nat Prod Res 18:529–535

    Article  CAS  Google Scholar 

  • Choudhary MI, Sultan S, Tareq M, Khan H, Atta-ur-Rahman (2005) Microbial transformation of 17α-ethynyl- and 17α-ethylsteroids, and tyrosinase inhibitory activity of transformed products. Steroids 70:798–802

    Article  CAS  Google Scholar 

  • Choudhary MI, Khan MT, Musharraf SG, Anjum S, Altta-ur-Rahman (2007) Biotransformation of adrenosterone by filamentous fungus, Cunninghamella elegans. Steroids 72:923–929

    Article  CAS  Google Scholar 

  • Choudhary MI, Mohammad MY, Musharraf SG, Parvez M, Al-Aboudic A, Atta-ur-Rahman (2009) New oxandrolone derivatives by biotransformation using Rhizopus stolonifer. Steroids 74:1040–1044

    Article  CAS  Google Scholar 

  • Choudhary MI, Erum S, Atif M, Malik R, Khan NT, Atta-ur-Rahman (2011) Biotransformation of (20S)-20-hydroxymethylpregna-1,4-dien-3-one by four filamentous fungi. Steroids 76:1288–1296

    CAS  Google Scholar 

  • Choudhary MI, Zafar S, Khan NT, Ahmad S, Noreen S, Marasini BP, Al-Khedhairy AA, Atta-ur-Rahman (2012) Biotransformation of dehydroepiandrosterone with Macrophomina phaseolina and β-glucuronidase inhibitory activity of transformed products. J Enz Inhib Med Chem 27(3):348–355

  • Claudino MJC, Soares D, Van Keulen F, Marques MPC, Cabral JMS, Fernandes P (2008) Immobilization of mycobacterial cells onto silicone—assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol. Bioresour Technol 99:2304–2311

    Article  CAS  Google Scholar 

  • Cole ST (2002) Comparative mycobacterial genomics as a tool for drug target and antigen discovery. Eur Respir J 20(Suppl 36):78–86

    Article  CAS  Google Scholar 

  • Craigie E, Mullins JJ, Bailey MA (2009) Glucocorticoids and mineralocorticoids. In: Bader M (ed) Cardiovascular hormone systems: from molecular mechanisms to novel therapeutics. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 1–64

    Google Scholar 

  • Črešnar B, Žakelj-Mavrič M (2009) Aspects of the steroid response in fungi. Chem-Biol Interact 178(1–3):303–309

    Article  CAS  Google Scholar 

  • Cruz A, Angelova B, Fernandes P, Cabral JMS, Pinheiro HM (2004) Study of key operational parameters for the side-chain cleavage of sitosterol by free mycobacterial cells in Bis-(2-ethylhexyl) phthalate. Biocatal Biotrans 22:189–194

    Article  CAS  Google Scholar 

  • Donova MV (2007) Transformation steroid compounds by actinobacteria. Appl Biochem Microbiol 43:1–14

    Article  CAS  Google Scholar 

  • Donova MV (2010) Steroid bioconversion by actinobacteria. Pushchino, OMTI PSC RAS, 195 p (In Russian)

  • Donova MV, Egorova OV, Nikolayeva VM (2005a) Steroid 17β-reduction by microorganisms—a review. Process Biochem 40:2253–2262

    Article  CAS  Google Scholar 

  • Donova MV, Dovbnya DV, Sukhodolskaya GV, Khomutov SM, Nikolayeva VM, Kwon I, Han K (2005b) Microbial conversion of sterol-containing soybean oil production waste. J Chem Technol Biotechnol 80:55–60

    Article  CAS  Google Scholar 

  • Donova MV, Gulevskaya SA, Dovbnya DV, Puntus IF (2005c) Mycobacterium sp. mutant strain producing 9α-hydroxyandrostenedione from sitosterol. Appl Microbiol Biotechnol 67:671–678

    Article  CAS  Google Scholar 

  • Donova MV, Nikolayeva VM, Dovbnya DV, Gulevskaya SA, Suzina NE (2007) Methyl-β-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. Microbiology 153(6):1981–1992

    Article  CAS  Google Scholar 

  • Douglas M (2010) Neurology of endocrine disease. Clin Med 10(4):387–390

    Google Scholar 

  • Dovbnya DV, Desherevskaya NA, Donova MV (2008) Microbial production of 3-substituted androsta-5,7-diene-17-one. J Biotechnol 136:360–362

    Article  Google Scholar 

  • Dovbnya DV, Egorova OV, Donova MV (2010) Microbial side-chain degradation of ergosterol and its 3-substituted derivatives: a new route for obtaining of deltanoids. Steroids 75:653–658

    Article  CAS  Google Scholar 

  • Dragan CA, Zearo S, Hannemann F, Bernhardt R, Bureik M (2005) Efficient conversion of 11-deoxycortisol to cortisol (hydrocortisone) by recombinant fission yeast Schizosaccharomyces pombe. FEMS Yeast Res 5:621–625

    Article  CAS  Google Scholar 

  • Dresen C, Lin LY-C, D’Angelo I, Tocheva EI, Strynadka N, Eltis LD (2010) A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem 285(29):22264–22275

    Article  CAS  Google Scholar 

  • Druzhinina AV, Andryushina VA, Stytsenko TS, Voishvillo NE (2008) Conversion of 17α-methyltestosterone to methandrostenolone by the bacterium Pimelobacter simplex VKPM Ac-1632 with the presence of cyclodextrins. Appl Biochem Microbiol 4:580–584

    Article  CAS  Google Scholar 

  • Drzyzga O, de las Heras Fernandez L, Morales V, Navarro Llorens JM, Perera J (2011) Cholesterol degradation by Gordonia cholesterolivorans. Appl Environ Microbiol 77(14):4802–4810

    Article  CAS  Google Scholar 

  • Egorova OV, Nikolayeva VM, Sukhodolskaya G, Donova MV (2009) Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp. J Mol Cat B: Enzym 5:198–203

    Article  CAS  Google Scholar 

  • El Refai HA, Abd-elslam IS (2010) Enhancement of β-sitosterol bioconversion by Fusarium solani using aqueous-organic solvent system. Aust J Basic Appl Sci 4(9):4107–4112

    CAS  Google Scholar 

  • El-Etra M, Ghoumari A, Sitruk-Ware R, Schumacher M (2011) Hormonal influences in multiple sclerosis: new therapeutic benefits for steroids. Maturitas 68(1):47–51

    Article  CAS  Google Scholar 

  • El-Hadi A (2003) Factors affecting the production of prednisolone by immobilization of Bacillus pumilus E601 cells in poly (vinyl alcohol) cryogels produced by radiation polymerization. Process Biochem 38:1659–1664

    Article  CAS  Google Scholar 

  • El-Hady AA, El-Rehim HA (2004) Production of prednisolone by Pseudomonas oleovorans cells incorporated into PVP/PEO radiation cross-linked hydrogels. J Biomed Biotechnol 4:219–226

    Article  Google Scholar 

  • El-Kadi IA, Mostafa ME (2004) Hydroxylation of progesterone by some Trichoderma species. Folia Microbiol 49:285–290

    Article  CAS  Google Scholar 

  • Eser D, Schüle C, Baghai TC, Romeo E, Uzunov DP, Rupprecht R (2006) Neuroactive steroids and affective disorders. Pharmacol Biochem Behav 84(4):656–666

    Article  CAS  Google Scholar 

  • Fahrbach M, Kuever J, Meinke R, Kampfer P, Hollender J (2006) Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 56:1547–1552

    Article  CAS  Google Scholar 

  • Fahrbach M, Krauss M, Preiss A, Kohler HP, Hollender J (2010) Anaerobic testosterone degradation in Steroidobacter denitrificans—identification of transformation products. Environ Pollut 158:2572–2581

    Article  CAS  Google Scholar 

  • Faramarzi MA, Aghelnejad M, Yazdi MT, Amini M, Hajarolasvadi N (2008a) Metabolism of androst-4-en-3,17-dione by the filamentous fungus Neurospora crassa. Steroids 73:13–18

    Article  CAS  Google Scholar 

  • Faramarzi MA, Badiee M, Yazdi MT, Amini M, Torshabi M (2008b) Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus Mucor racemosus. J Mol Cat B: Enzym 50:7–12

    Article  CAS  Google Scholar 

  • Fernandes P, Cabral JMS (2007) Phytosterols: applications and recovery methods. Biores Technol 98:2335–2350

    Article  CAS  Google Scholar 

  • Fernandes P, Cabral JMS (2010) Steroid Bioconversion. In: Flickinger M (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 1–32

    Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enz Microb Technol 32:688–705

    Article  CAS  Google Scholar 

  • Fernández de las Heras L, Mascaraque L, Fernández EG, Navarro-Llorens JM, Perera J, Drzyzga O (2011) ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp. strain CECT3014. Microb Research 166(5):403–418

    Article  CAS  Google Scholar 

  • Finocchi C, Ferrari M (2011) Female reproductive steroids and neuronal excitability. Neurol Sci 32(Suppl 1):S31–S35

    Article  Google Scholar 

  • Fokina V, Sukhodolskaya G, Gulevskaya S, Gavrish E, Evtushenko L, Donova M (2003a) The 1(2)-dehydrogenation of steroid substrates by Nocardioides simplex VKM Ac-2033D. Microbiology 2:24–29

    Article  Google Scholar 

  • Fokina V, Sukhodolskaya G, Bascunov B, Turchin GSGrinenko, Donova MV (2003b) Microbial conversion of pregna-4,9(11)-diene-17[alpha],21-diol-3,20-dione acetates by Nocardioides simplex VKM Ac-2033D. Steroids 68:415–421

    Article  CAS  Google Scholar 

  • Fragkaki AG, Angelis YS, Koupparis M, Tsantili-Kakoulidou A, Kokotos G, Georgakopoulos C (2009) Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities: applied modifications in the steroidal structure. Steroids 74:172–197

    Article  CAS  Google Scholar 

  • Funder JW (2010) Minireview: aldosterone and mineralocorticoid receptors: past, present, and future. Endocrinology 151(11):5098–5102

    Article  CAS  Google Scholar 

  • Gao J-M, Shen J-W, Wang J-Y, Yang Z, Zhang A-L (2011) Microbial transformation of 3β-acetoxypregna-5,16-diene-20-one by Penicillium citrinum. Steroids 76:43–47

    Article  CAS  Google Scholar 

  • Garcia-Segura LM, Balthazart J (2009) Steroids and neuroprotection: new advances. Front Neuroendocrinol 30(2):v–ix

    Article  Google Scholar 

  • Ge W, Wang S, Shen L, Li N, Liu H (2008) Transformation of 3β-hydroxy-5-en-steroids by Mucor racemosus. J Mol Cat B: Enzym 55:37–42

    Article  CAS  Google Scholar 

  • Goetschel R, Bar R (1992) Formation of mixed crystals in microbial conversion of sterols and steroids. Enzyme Microb Technol 14:462–469

    Article  CAS  Google Scholar 

  • Gulla V, Banerjee T, Patil S (2010) Bioconversion of soysterols to androstenedione by Mycobacterium fortuitum subsp fortuitum NCIM 5239, a mutant derived from total sterol degrader strain. J Chem Technol Biotechnol 85:1135–1141

    Article  CAS  Google Scholar 

  • Hakki T, Bernhardt R (2006) CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. Pharmacol Therapeut 111:27–52

    Article  CAS  Google Scholar 

  • Hakki T, Zearo S, Drăgan C-A, Bureik M, Bernhard R (2008) Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe. J Biotechnol 133(3):351–359

    Article  CAS  Google Scholar 

  • Hannemann F, Virus C, Bernhardt R (2006) Design of an Escherichia coli system for whole cell mediated steroid synthesis and molecular evolution of steroid hydroxylases. J Biotechnol 124:172–181

    Article  CAS  Google Scholar 

  • Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344

    Article  CAS  Google Scholar 

  • Hannich JT, Umebayashi K, Riezman H (2011) Distribution and functions of sterols and sphingolipids. Cold Spring Harb Perspect Biol 3:a004762

    Article  CAS  Google Scholar 

  • Hanson JR (2005) Steroids: reactions and partial synthesis. Nat Prod Rep 22:104–110

    Article  CAS  Google Scholar 

  • He J-Y, Wang P, Yang Y-F, Xie S-L (2011) Enhanced whole-cell biodehydrogenation of 11β-hydroxyl medroxyprogesterone in a biphasic system containing ionic liquid. Biotechnol Bioproc Eng 16:852–857

    Article  CAS  Google Scholar 

  • Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973

    Article  CAS  Google Scholar 

  • Horhold C, Gottschald B, Grosse H-H (1989) Microbial transformation of sterols to androstane-compounds in presence of organic resins. Proc Vth Internat Conf on Chem and Biotechnol Biol Active Natur Prod, 92–110

  • Horinouchi M, Kurita T, Hayashi T, Toshiaki K (2010) Steroid degradation genes in Comamonas testosteroni TA441: isolation of genes encoding a Δ4(5)-isomerase and 3α- and 3β-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot. J Steroid Biochem Mol Biol 122:253–263

    Article  CAS  Google Scholar 

  • Huang CL, Chen YR, Liu WH (2006) Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enz Microb Technol 39:296–300

    Article  CAS  Google Scholar 

  • Huang L-H, Li J, Xu G, Zhang X-H, Wang Y-G, Yin Y-L, Liu H-M (2010) Biotransformation of dehydroepiandrosterone (DHEA) with Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer) Westling. Steroids 75:13–14

    Article  CAS  Google Scholar 

  • Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6(2):111–120

    Article  CAS  Google Scholar 

  • Hunter AC, Bergin-Simpson H (2007) Distinct metabolic handling of 3beta-hydroxy-17a-oxa-D-homo-5alpha-androstan-17-one by the filamentous fungus Aspergillus tamarii KITA: evidence in support of steroid/hydroxylase binding hypothesis. Biochim Biophys Acta 1771(9):1254–1261

    CAS  Google Scholar 

  • Hunter AC, Priest SM (2006) Ring-B functionalized androst-4-en-3-ones and ring-C substituted pregn-4-en-3-ones undergo differential transformation in Aspergillus tamari KITA: ring-A transformation with all C-6 substituted steroids and ring-D transformation with C-11 substituents. Biochim Bioph Acta 1761:360–366

    CAS  Google Scholar 

  • Hunter AC, Mills PW, Dedi X, Dodd HT (2008) Predominant allylic hydroxylation at carbons 6 and 7 of 4 and 5-ene functionalized steroids by the thermophilic fungus Rhizomucor tauricus IMI23312. J Steroid Biochem Mol Biol 108(1–2):155–163

    Article  CAS  Google Scholar 

  • Hunter AC, Rymer S-J, Dedi C, Dodd HT, Nwozor QC, Moghimi M (2011) Transformation of structurally diverse steroidal analogues by the fungus Corynespora cassiicola CBS 161.60 results in generation of 8β-monohydroxylated metabolites with evidence in favour of 8β-hydroxylation through inverted binding in the 9α-hydroxylase. Bioch Bioph Acta 1811:1054–1061

    CAS  Google Scholar 

  • Huszcza E, Dmochowska-Gładysz J (2003) Transformations of testosterone and related steroids by Botrytis cinerea. Phytochemistry 62:155–158

    Article  CAS  Google Scholar 

  • Huttel W, Hoffmeister D (2010) Fungal biotransformations in pharmaceutical sciences. In: Hofrichter M (ed) Industrial applications, the mycota X, 2. Springer, Berlin, pp 293–317

    Google Scholar 

  • Ivashina TV, Nikolayeva VM, Dovbnya DV, Donova MV (2012) Cholesterol oxidase ChoD is not a critical enzyme accounting for oxidation of sterols to 3-keto-4-ene steroids in fast-growing Mycobacterium sp. VKM Ac-1815D. J Steroid Biochem Mol Biol 129:47–53

    Article  CAS  Google Scholar 

  • Janeczko T, Dmochowska-Gładysz J, Kostrzewa-Susłow E, Białonska E, Ciunik Z (2009) Biotransformations of steroid compounds by Chaetomium sp. KCH 6651. Steroids 74:657–661

    Article  CAS  Google Scholar 

  • Jones ERH (1973) The microbiological hydroxylation of steroids and related compounds. Pure Appl Chem 33:39–52

    Article  CAS  Google Scholar 

  • Junter GA, Jouenne T (2004) Immobilized viable microbial cells: from the process to the proteome… or the cart before the horse. Biotechnol Adv 22:633–658

    Article  CAS  Google Scholar 

  • Kendall S, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, ten Bokum A, Besra GS, Lott JS, Stoker NG (2007) A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 65(3):684–699

    Article  CAS  Google Scholar 

  • Kendall S, Burgess P, Balhana R, Withers M, ten Bokum A, Lott JS, Gao C, Uhia-Castro I, Stoker NG (2010) Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2. Microbiology 156:1362–1371

    Article  CAS  Google Scholar 

  • Khomutov S, Sukhodolskaya G, Donova M (2007) The inhibitory effect of cyclodextrin on the degradation of 9α-hydroxyandrost-4-ene-3, 17-dione by Mycobacterium sp. VKM Ac-1817D. Biocat Biotransform 25:386–392

    Article  CAS  Google Scholar 

  • Kieslich K (1985) Microbial side-chain degradation of sterols. J Basic Microbiol 25:461–474

    Article  CAS  Google Scholar 

  • Kim Y, Han J, Lee SS, Shimizu K, Tsutsum Y, Kondo R (2007) Steroid 9-hydroxylation during testosterone degradation by resting Rhodococcus equi cells. Arch Pharm 340:209–214

    Article  CAS  Google Scholar 

  • Kim T-K, Chen J, Lib W, Zjawionyc J, Miller D, Janjetovic Z, Tuckey RC, Slominski A (2010) A new steroidal 5,7-diene derivative, 3β-hydroxyandrosta-5,7-diene-17β-carboxylic acid, shows potent anti-proliferative activity. Steroids 75(3):230–239

    Article  CAS  Google Scholar 

  • Kisiela M, Skarka A, Eberta B, Maser E (2012) Hydroxysteroid dehydrogenases (HSDs) in bacteria—a bioinformatics perspective. J Steroid Biochem Mol Biol 129:31–46

    Article  CAS  Google Scholar 

  • Knol J, Bodewits K, Hessels GI, Dijkhuizen L, van der Geize R (2008) 3-Keto-5α-steroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. Biochem J 410:339–346

    Article  CAS  Google Scholar 

  • Kolar NW, Swart AC, Masonb JI, Swart P (2007) Functional expression and characterization of human cytochrome P45017a in Pichia pastoris. J Biotechnol 129:635–644

    Article  CAS  Google Scholar 

  • Kolek T, Szpineter A, Świszdor A (2008) Baeyer–Villiger oxidation of DHEA, pregnenolone, and androstenedione by Penicillium lilacinum AM111. Steroids 73:1441–1445

    Article  CAS  Google Scholar 

  • Kolek T, Szpineter A, Świszdor A (2009) Studies on Baeyer–Villiger oxidation of steroids: DHEA and pregnenolone d-lactonization pathways in Penicillium camemberti AM83. Steroids 74(10–11):859–862

    CAS  Google Scholar 

  • Kołek T, Milecka N, Świzdor A, Panek A, Białońska A (2011) Hydroxylation of DHEA, androstenediol and epiandrosterone by Mortierella isabellina AM212. Evidence indicating that both constitutive and inducible hydroxylases catalyze 7α- as well as 7β-hydroxylations of 5-ene substrates. Org Biomol Chem 7(9):5414–5422

    Article  CAS  Google Scholar 

  • Kollerov VV, Shutov AA, Fokina VV, Sukhodol’skaya GV, Donova MV (2008) Biotransformation of 3-keto-androstanes by the strain of Gongronella butleri VKM F-1033. J Mol Cat B: Enzym 55:61–68

    Article  CAS  Google Scholar 

  • Kollerov VV, Shutov AA, Fokina VV, Sukhodol’skaya GV, Gulevskaya SA, Donova MV (2010) Bioconversion of C19- and C21-steroids with parent and mutant strains of Curvularia lunata. Appl Biochem Microbiol 46:198–205

    Article  CAS  Google Scholar 

  • Kollerov VV, Shutov AA, Donova MV (2011a) Microbiological production of 11α-hydroxyprogesterone from pregnenolone. Abstr 10th Internat Sympos on Biocatalysis “Biotrans 2011”, October 2–6, Giardini Naxos (ME), Sicily, Italy, P 91

  • Kollerov VV, Fokina VV, Sukhodolskaya GV, Shutov AA, Donova MV (2011b) 11β-Hydroxylation of 6α-fluoro-16-methyl-deoxycorticosterone by filamentous fungi. Abstr 10th Internat Sympos on Biocatalysis “Biotrans 2011”, October 2–6, Giardini Naxos (ME), Sicily, Italy, P 90

  • Korycka-Machała M, Rumijowska-Galewicz A, Dziadek J (2005) The effect of ethambutol on mycobacterial cell wall permeability to hydrophobic compound. Polish J Microbiol 54:5–12

    Google Scholar 

  • Koshimura M, Utsukihara T, Hara A, Mizobuchi S, Horiuchi CA, Kuniyoshi M (2010) Hydroxylation of steroid compounds by Gelasinospora retispora. J Mol Cat B: Enzym 67:72–77

    Article  CAS  Google Scholar 

  • Kreit J, Sampson NS (2009) Cholesterol oxidase: physiological functions. FEBS J 276:6844–6856

    Article  CAS  Google Scholar 

  • Kristan K, Lanisnik Rizner T (2012) Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol 129:79–91

    Article  CAS  Google Scholar 

  • Kristan K, Stojan J, Möller G, Adamski J, Lanisnik Rizner T (2005) Coenzyme specificity in fungal 17β-hydroxysteroid dehydrogenase. Mol Cell Endocrinol 241:80–87

    Article  CAS  Google Scholar 

  • Kristan K, Adamski J, Lanisnik Rizner T, Stojan J (2007a) His164 regulates accessibility to the active site in fungal 17β-hydroxysteroid dehydrogenase. Biochimie 89:63–71

    Article  CAS  Google Scholar 

  • Kristan K, Stojan J, Adamski J, Lanisnik Rizner T (2007b) Rational design of novel mutants of fungal 17β-hydroxysteroid dehydrogenase. J Biotechnol 129:123–130

    Article  CAS  Google Scholar 

  • Kutney JP, Herrington EJ, Spassov G (2003) Process for fermentation of phytosterols to androstadiendione. WO2003064674A2

  • Lam KS (2010) Application of whole-cell biotransformation in the pharmaceutical industry. In: Tao J, Lin G-Q, Liese A (Ed) Biocatalysis for the pharmaceutical industry: discovery, development, and manufacturing. Wiley, New York, pp 213–227

  • Lamm AS, Chen ARM, Reynolds WF, Reese PB (2007) Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus. Steroids 72(9–10):713–722

    Article  CAS  Google Scholar 

  • Laveaga GS (2005) Uncommon trajectories: steroid hormones, Mexican peasants, and the search for a wild yam. Stud Hist Phil Biol Biomed Sci 36:743–760

    Google Scholar 

  • Lednicer D (2011) Steroid chemistry at a glance. Wiley, Chichester

    Google Scholar 

  • Lehman LR, Stewart JD (2001) Filamentous fungi: potentially useful catalysts for the biohydroxylations of non-activated carbon centres. Curr Org Chem 5:439–470

    Article  CAS  Google Scholar 

  • Li H, Liu HM, Ge W, Huang L, Shan L (2005) Synthesis of 7α-hydroxy-dehydroepiandrosterone and 7β-hydroxy-dehydroepiandrosterone. Steroids 70:970–973

    Article  CAS  Google Scholar 

  • Li J-H, Guan Y-X, Wang H-Q, Yao S-J (2009) Dehydrogenation of 11α-hydroxy-16α,17-epoxyprogesterone by encapsulated Arthrobacter simplex cells in an aqueous/organic solvent two-liquid-phase system. J Chem Technol Biotechnol 84:208–214

    Article  CAS  Google Scholar 

  • Li B, Wang W, Wang F-Q, Wei D-Z (2010) Cholesterol oxidase ChoL is a critical enzyme that catalyzes the conversion of diosgenin to 4-ene-3-keto steroids in Streptomyces virginiae IBL-14. Appl Microbiol Biotechnol 85:1831–1838

    Article  CAS  Google Scholar 

  • Lin Y, Song X, Fu J, Lin J, Qu Y (2009a) Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by Fusarium moniliforme Sheld. Biores Technol 10:1864–1867

    Article  CAS  Google Scholar 

  • Lin Y, Song X, Fu J, Lin J, Qu Y (2009b) Microbial transformation of androst-4-ene-3,17-dione by Bordetella sp. B4 CGMCC 2229. J Chem Technol Biotechnol 84:789–793

    Article  CAS  Google Scholar 

  • Liu W-H, Kuo C-W, Wu K-L, Lee C-Y, Hsu W-Y (1994) Transformation of cholesterol to testosterone by Mycobacterium sp. J Ind Microbiol 13:167–171

    Article  CAS  Google Scholar 

  • Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W (2011) Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol 27:4759–4765

    Google Scholar 

  • Lo C-K, Pan C-P, Liu W-H (2002) Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp. J Ind Microbiol Biotechnol 28:280–283

    Article  CAS  Google Scholar 

  • Lobastova TG, Donova MV (2010) Microbial formation of lactones from dehydroepiandrosterone. J Biotechnol 150S:190–191

    Article  Google Scholar 

  • Lobastova TG, Gulevskaya SA, Sukhodolskaya GV, Turchin KF, Donova MV (2007) Screening of mycelial fungi for 7α- and 7β-hydroxylase activity towards dehydroepiandrosterone. Biocatal Biotrans 25:434–442

    Article  CAS  Google Scholar 

  • Lobastova TG, Khomutov SM, Vasiljeva LL, Lapitskaya MA, Pivnitsky KK, Donova MV (2009a) Synthesis of 3β-hydroxy-androsta-5,7-dien-17-one from 3β-hydroxyandrost-5-en-17-one via microbial 7α-hydroxylation. Steroids 74:233–237

    Article  CAS  Google Scholar 

  • Lobastova TG, Gulevskaya SA, Sukhodolskaya GV, Donova MV (2009b) Dihydroxylation of dehydroepiandrosterone in positions 7α and 15α by mycelial fungi. Appl Biochem Microbiol 45:617–622

    Article  CAS  Google Scholar 

  • Lu W, Du L, Wang M, Wen J, Sun B, Guo Y (2006) Effect of two-steps substrate addition on steroids 11β-hydroxylation by Curvularia lunata CL-114. Biochem Eng J 32:233–238

    Article  CAS  Google Scholar 

  • Lu W, Du L, Wang M, Jia X, Wen J, Huang Y, Guo Y, Gong W, Bao H, Yang J, Sun B (2007a) Optimization of hydrocortisone production by Curvularia lunata. Appl Biochem Biotechnol 142:17–28

    Article  CAS  Google Scholar 

  • Lu W, Du L, Wang M, Guo Y, Lu F, Sun B, Wen J, Jia X (2007b) A novel substrate addition method in the 11β-hydroxylation of steroids by Curvularia lunata. Food Bioprod Proc 85:63–72

    Article  CAS  Google Scholar 

  • Machaia KM, Ziolkowski A, Galewicz AR, Lisowska K, Sedlaczek L (2001) Polycations increase the permeability of Mycobacterium vaccae cell envelopes to hydrophobic compounds. Microbiology 147:2769–2781

    Google Scholar 

  • MacLachlan J, Wotherspoon A, Ansell R, Brooks C (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J Steroid Biochem Mol Biol 72(5):169–195

    Article  CAS  Google Scholar 

  • Mahato SB, Garai S (1997) Advances in microbial steroid biotransformation. Steroids 62:332–345

    Article  CAS  Google Scholar 

  • Malaviya A, Gomes J (2008a) Androstenedione production by biotransformation of phytosterols. Bioresour Technol 99:6725–6737

    Article  CAS  Google Scholar 

  • Malaviya A, Gomes J (2008b) Nutrient broth/PEG200/TritonX114/Tween80/Chloroform microemulsion as a reservoir of solubilized sitosterol for biotransformation to androstenedione. J Ind Microbiol Biotechnol 35:1435–1440

    Article  CAS  Google Scholar 

  • Malaviya A, Gomes J (2008c) Enhanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using cell wall permeabilizing antibiotics. J Ind Microbiol Biotechnol 35:1235–1239

    Article  CAS  Google Scholar 

  • Malaviya A, Gomes J (2009) Rapid screening and isolation of a fungus for sitosterol to androstenedione biotransformation. Appl Biochem Biotechnol 158:374–386

    Article  CAS  Google Scholar 

  • Manosroi J, Sripalakit P, Manosroi A (2003) Biotransformation of chlormadinone acetate to delmadinone acetate by free and immobilized Arthrobacter simplex ATCC 6946 and Bacillus sphaericus ATCC 13805. Enzyme Microb Technol 33:320–325

    Article  CAS  Google Scholar 

  • Manosroi J, Saowakhon S, Manosroi A (2007) A novel one-step biotransformation of cortexolone-21-acetate to hydrocortisone acetate using Cunninghamella blakesleeana ATCC 8688a. Enz Microb Technol 41:322–325

    Article  CAS  Google Scholar 

  • Manosroi J, Chisti Y, Manosroi A (2008a) Biotransformation of cortexolone to hydrocortisone by molds using a rapid color-development assay. Appl Biochem Microbiol 42:479–483

    Article  CAS  Google Scholar 

  • Manosroi A, Saowakhon S, Manosroi J (2008b) Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-β-cyclodextrin complexation technique. J Steroid Biochem Mol Biol 108:132–136

    Article  CAS  Google Scholar 

  • Manosroi J, Saowakhon S, Manosroi A (2008c) Enhancement of 17α-hydroxyprogesterone production from progesterone by biotransformation using hydroxypropyl-β-cyclodextrin complexation technique. J Steroid Biochem Mol Biol 112:201–204

    Article  CAS  Google Scholar 

  • Marques MPC, Carvalho F, Magalhães S, Cabral JMS, Fernandes P (2009) Screening for suitable solvents as substrate carriers for the microbial side-chain cleavage of sitosterol using microtitre plates. Process Biochem 44:556–561

    Article  CAS  Google Scholar 

  • Marques MPC, Carvalho F, de Carvalho CCCR, Cabral JMS, Fernandes P (2010) Steroid bioconversion: towards green processes. Food Bioprod Proces 88:12–20

    Article  CAS  Google Scholar 

  • Mathieu JM, Mohn WW, Eltis LD, LeBlanc JC, Stewart GR, Dresen C, Okamoto K, Alvarez PJJ (2010) 7-ketocholesterol catabolism by Rhodococcus jostii RHA1. Appl Environ Microbiol 76(1):352–355

    Article  Google Scholar 

  • Melcangi RC, Panzica G, Garcia-Segura LM (2011) Neuroactive steroids: focus on human brain. Neuroscience 15(191):1–5

    Article  CAS  Google Scholar 

  • Mendes MV, Recio E, Antón N, Guerra SM, Santos-Aberturas J, Martín JF, Aparicio JF (2007) Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin. Chem Biol 14(3):279–290

    Article  CAS  Google Scholar 

  • Messinger J, Thole H-H, Rasche H-H, Schmidt M, Hakala J (2007) Microbial method for the 11β hydroxylation of 9β, 10α-steriods. US Patent 20070212751

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  • Mohn WW, van der Geize R, Stewart GR, Okamoto S, Liu J, Dijkhuizen L, Eltis LD (2008) The Actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem 283:35368–35374

    Article  CAS  Google Scholar 

  • Molchanova MA, Andryushina VA, Savinova TS, Stytsenko TS, Rodina NV, Voishvillo NE (2007) Preparation of androsta-1,4-diene-3,17-dione from sterols using Mycobacterium neoaurum VKPM Ac-1656 strain. Russ J Bioorg Chem 33:354–358

    Article  CAS  Google Scholar 

  • Monti D, Ottolina G, Carrea G, Riva S (2011) Redox reactions catalyzed by isolated enzymes. Chem Rev 111(7):4111–4140

    Article  CAS  Google Scholar 

  • Muthukrishman S, Merzendorfer H, Arakane Y, Kramer KJ (2011) Chitin metabolism in insects. In: Gilbert LI (ed) Insect molecular biology and biochemistry, 1st edn. Academic Press, London, pp 193–235

    Google Scholar 

  • Naumann JM, Messinger J, Bureik M (2010) Human 20α-hydroxysteroid dehydrogenase (AKR1C1)-dependent biotransformation with recombinant fission yeast Schizosaccharomyces pombe. J Biotechnol 150(1):161–170

    Article  CAS  Google Scholar 

  • Naumann JM, Zollner A, Dragan C-A, Messinger J, Adam J, Bureik M (2011) Biotechnological production of 20-alpha-dihydrodydrogesterone at pilot scale. Appl Biochem Biotechnol 165(1):190–203

    Article  CAS  Google Scholar 

  • Navas J, Gonzalez-Zorn B, Ladron N, Garrido P, Vazquez-Boland JA (2001) Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. J Bacteriol 183(16):4796–4805

    Article  CAS  Google Scholar 

  • Nesbitt NM, Yang X, Fontan P, Kolesnikova I, Smith I, Sampson NS, Dubnau E (2010) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstanedione from cholesterol. Infect Immun 78:275–282

    Article  CAS  Google Scholar 

  • Nikolayeva VM, Egorova OV, Dovbnya DV, Donova MV (2004) Extracellular 3β-hydroxysteroid oxidase of Mycobacterium vaccae VKM Ac-1815D. J Steroid Biochem Mol Biol 90:182–188

    Google Scholar 

  • Novikova LA, Faletrov YV, Kovaleva IE, Mauersberger S, Luzikov VN, Shkumatov VM (2009) From structure and functions of steroidogenic enzymes to new technologies of gene engineering. Biochem Mosc 74(13):1482–1504

    Article  CAS  Google Scholar 

  • Olasz K, Tegdes A, Gancsos V, Hantos G, Könczöl K, Balogh G, Erdélyi S (2009) Process for the synthesis of 9α-hydroxy-steroids. WO 2009/004394

  • Olivares A, Acevedo F (2011) Effect of inoculation strategies, substrate to biomass ratio and nitrogen sources on the bioconversion of wood sterols by Mycobacterium sp. World J Microbiol Biotechnol 27(11):2513–2520

    Article  CAS  Google Scholar 

  • Ouellet H, Johnston JB, de Montellano PRO (2011) Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol 19:530–553

    Article  CAS  Google Scholar 

  • Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380

    Article  CAS  Google Scholar 

  • Peart PC, McCook KP, Russell FA, Reynolds WF, Reese PB (2011) Hydroxylation of steroids by Fusarium oxysporum, Exophiala jeanselmei and Ceratocystis paradoxa. Steroids 76:1317–1330

    Article  CAS  Google Scholar 

  • Peart PC, Chen ARM, Reynolds WF, Reese PB (2012) Entrapment of mycelial fragments in calcium alginate: a general technique for the use of immobilized filamentous fungi in biocatalysis. Steroids 12:85–90

    Google Scholar 

  • Perez C, Falero A, Hung BR, Tirado S, Balcinde Y (2005) Bioconversion of phytosterols to androstanes by mycobacteria growing on sugar cane mud. J Ind Microbiol Biotechnol 32(3):83–86

    Article  CAS  Google Scholar 

  • Perez C, Falero A, Duc HL, Balcinde Y, Hung BR (2006) A very efficient bioconversion of soybean phytosterols mixtures to androstanes by Mycobacteria. J Ind Microbiol Biotechnol 33:719–723

    Article  CAS  Google Scholar 

  • Petric S, Hakki T, Bernhardt R, Zigon D, Cresnar B (2010) Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application. J Biotechnol 150:428–437

    Article  CAS  Google Scholar 

  • Petrusma M, Dijkhuizen L, van der Geize R (2009) Rhodococcus rhodochrous DSM 43269 3-ketosteroid-9α-hydroxylase, a two-component iron-sulfur-containing monooxygenase with subtle steroid substrate specificity. Appl Environ Microbiol 75:5300–5307

    Article  CAS  Google Scholar 

  • Philipp B (2011) Bacterial degradation of bile salts. Appl Microbiol Biotechnol 89:903–915

    Article  CAS  Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agricul 80:939–966

    Article  CAS  Google Scholar 

  • Pollegioni L (2009) Cholesterol oxidase: a model flavoprotein oxidase and a biotechnological tool. FEBS J 276(23):6825–6831

    Article  CAS  Google Scholar 

  • Prabha V, Ohri M (2006) Review: bacterial transformations of bile acids. World J Microbiol Biotechnol 22(2):191–196

    Article  CAS  Google Scholar 

  • Reddy DS (2003) Pharmacology of endogenous neuroactive steroids. Crit Rev Neurobiol 15(3–4):197–234

    CAS  Google Scholar 

  • Reese P (2007) Biotransformation of terpenes and steroids by fungi. In: Zhu Y-Z, Tan BK-H, Bay B-H, Liu C-H (eds) Natural products: essential resources for human survival. Word Scientific Publishing Co Pte Ltd, Singapore, pp 71–76

    Chapter  Google Scholar 

  • Rodina NV, Andryushina VA, Stytsenko TS, Turova TP, Baslerov RV, Panteleeva AN, Voishvillo NE (2009) The introduction of the 9α-hydroxy group into androst-4-en-3,17-dione using a new actinobacterium strain. Appl Biochem Microbiol 45(4):395–400

    Article  CAS  Google Scholar 

  • Roglič U, Žnidaršič-Plazl P, Plazl I (2005) The influence of β-cyclodextrin on the kinetics of progesterone transformation by Rhizopus nigricans. Biocat Biotrans 23(5):299–305

    Article  CAS  Google Scholar 

  • Roglič U, Plazl I, Žnidaršič-Plazl P (2007) Batch and continuous transformation of progesterone by Rhizopus nigricans pellets in the presence of β-cyclodextrin. Biocat Biotrans 25(1):16–23

    Article  CAS  Google Scholar 

  • Romano A, Romano D, Ragg E, Costantino F, Lenna R, Gandolfi R, Molinari F (2006) Steroid hydroxylations with Botryodiplodia malorum and Colletotrichum lini. Steroids 71:429–434

    Article  CAS  Google Scholar 

  • Rösch V, Denger K, Schleheck D, Smits THM, Cook AM (2008) Different bacterial strategies to degrade taurocholate. Arch Microbiol 190:11–18

    Article  CAS  Google Scholar 

  • Rosłoniec KZ (2010) Steroid transformation by Rhodococcus strains and bacterial cytochrome P450 enzymes. Dissertation, University of Groningen

  • Rosłoniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, Dijkhuizen L, Eltis LD (2009) Cytochrome P450 125 (CYP125) catalyzes C26-hydroxylation to initiate sterol side chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 74:1031–1043

    Article  CAS  Google Scholar 

  • Rubtsov AB, Rubtsova K, Kapplera JW, Marracka P (2010) Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Rev 9(7):494–498

    Article  CAS  Google Scholar 

  • Rugutt JK, Rugutt KJ (2011) Antimycobacterial activity of steroids, long-chain alcohols and lytic peptides. Nat Prod Res. doi:10.1080/14786419.2010.539977

  • Ruijssenaars HJ, Sperling EMGM, Wiegerinck PHG, Brands FTL, Wery J, de Bonta JAM (2007) Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12. J Biotechnol 131:205–208

    Article  CAS  Google Scholar 

  • Rumijowska-Galewicz A, Ziółkowski A, Korycka-Machała M, Sedlaczek L (2000) Alteration in lipid composition of Mycobacterium vaccae cell wall outer layer enhance β-sitosterol degradation. World J Microbiol Biotechnol 16:237–244

    Article  CAS  Google Scholar 

  • Rumijowska-Galewicz A, Korycka-Machała M, Lisowska K, Dziadek J (2008) The composition of cell wall skeleton and outermost lipids of Mycobacterium vaccae is modified by ethambutol treatment. Pol J Microbiol 57(2):99–104

    CAS  Google Scholar 

  • Rupprecht R (2003) Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology 28:139–168

    Article  CAS  Google Scholar 

  • Sallam LAR, El-Refai A-M, El-Minofi HA (2005) Physiological and biochemical improvement of the enzyme side-chain degradation of cholesterol by Fusarium solani. Process Biochem 40:203–206

    Article  CAS  Google Scholar 

  • Sallam LAR, Osman ME, Hamdy AA, Zaghlol GM (2008) Microbial transformation of phytosterols mixture from rice bran oil unsaponifiable matter by selected bacteria. World J Microbiol Biotechnol 24:1643–1656

    Article  CAS  Google Scholar 

  • Sang Y, Xiong G, Maser E (2011) Steroid degradation and two steroid-inducible enzymes in the marine bacterium H5. Chem-Biol Interact 191(1–3):89–94

    Article  CAS  Google Scholar 

  • Savinova TS, Lukashev NV, Sukhodolskaya GV, Donova MV, Fokina VV, Shutov AA, Nikolayeva VM (2011) Method for obtaining 6-methyleneandrost-4-ene-3,17-dione and obtaining of 6-methylene androsta-1,4-diene-3,17-dione (exemestane) from 6-methyleneandrost-4-ene-3,17-dione thereof. Patent RU2425052

  • Schneider K, Graf E, Irran E, Nicholson G, Stainsby FM, Goodfellow M, Borden SA, Keller S, Sussmuth RD, Fiedler HP (2008) Bendigoles A C, new steroids from Gordonia australis Acta 2299. J Antibiot (Tokyo) 61:356–364

    Article  CAS  Google Scholar 

  • Schüle C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R (2011) Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience 191:55–77

    Article  CAS  Google Scholar 

  • Sedlaczek L, Smith L (1988) Biotransformation of steroids. Crit Revs Biotechnol 7:187–236

    Article  CAS  Google Scholar 

  • Shen YJ, Sun H, Fu YW, Xu CY, Wang M (2011a) Progesterone hydroxylation with Colletotrichum lini AS3. Adv Mat Res 343–344:1070–1073

    Article  CAS  Google Scholar 

  • Shen Y, Wang M, Zhang L, Ma Y, Ma B, Zheng Y, Liu H, Luo J (2011b) Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transforming Arthrobacter simplex and Mycobacterium sp. Appl Microbiol Biotechnol 90(6):1995–2003

    Article  CAS  Google Scholar 

  • Song T, Woong Park S, Park S-J, Kim JH, Yu JY, J-Il Oh, Kim YM (2010) Cloning and expression analysis of the duplicated genes for carbon monoxide dehydrogenase of Mycobacterium sp. strain JC1 DSM 3803. Microbiology 156:999–1008

    Article  CAS  Google Scholar 

  • Spelling T (2008) Process for the overexpression of dehydrogenases. US Patent 7,416,866

  • Spencer SJ, Tilbrook A (2011) The glucocorticoid contribution to obesity. Stress 14(3):233–246

    CAS  Google Scholar 

  • Sripalakit P, Wichai U, Saraphanchotiwitthaya A (2006) Biotransformation of various natural sterols to androstenones by Mycobacterium sp. and some steroid converting, microbial strains. J Mol Cat B-Enzym 41:49–54

    Article  CAS  Google Scholar 

  • Staebler A, Cruz A, van der Goot W, Pinheiro HM, Cabral JMS, Fernandes P (2004) Optimization of androstenedione production in an organic–aqueous two-liquid phase system. J Mol Cat B: Enzym 29(1–6):19–23

    Article  CAS  Google Scholar 

  • Stefanov S, Yankov D, Beschkov V (2006) Biotransformation of phytosterols to androstenedione in two phase water–oil systems. Chem Biochem Eng Q 20:421–427

    CAS  Google Scholar 

  • Swizdor A, Kolek T, Panek A, Białońska A (2011) Microbial Baeyer–Villiger oxidation of steroidal ketones using Beauveria bassiana: presence of an 11α-hydroxyl group essential to generation of D-homo lactones. BBA Mol Cell Biol Lipid 1811:253–262

    CAS  Google Scholar 

  • Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149

    Article  CAS  Google Scholar 

  • Szentirmai A (1990) Microbial physiology of sidechain degradation of sterols. J Ind Microbiol Biotechnol 6:101–115

    CAS  Google Scholar 

  • Tong W-Y, Dong X (2009) Microbial biotransformation: recent developments on steroid drugs. Recent Patents on Biotechnol 3:141–153

    Article  CAS  Google Scholar 

  • Toro A, Ambrus G (1990) Oxidative Decarboxylation of 17(20)-Dehydro-23,24-dinorcholanoic acids. Tetrahed Let 31:3475–3476

    Article  CAS  Google Scholar 

  • Torshabi M, Badiee M, Faramarzi MA, Rastegar H, Forootanfar H, Mohit E (2011) Biotransformation of methyltestosterone by the filamentous fungus Mucor racemosus. Chem Nat Comp 47(1):59–63

    Article  CAS  Google Scholar 

  • Tortoli E (2006) The new mycobacteria: an update. FEMS Immunol Med Microbiol 48:159–178

    Article  CAS  Google Scholar 

  • Turuta AM, Voishvillo NE, Kamernitskii AV (1992) Microbiological hydroxylation of 5α-H steroids. Russ Chem Rev 61:1033–1057

    Article  Google Scholar 

  • Uhía I, Galán B, Morales V, García JL (2011a) Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc2 155. Environ Microbiol 13(4):943

    Article  CAS  Google Scholar 

  • Uhía I, Galán B, Medrano FJ, García JL (2011b) Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway in Mycobacterium smegmatis. Microbiology 157(Pt 9):2670–2680

    Article  CAS  Google Scholar 

  • Uhía I, Galán B, Sharon L, Kendall SL, Neil G, Stoker NG, García J (2012) Cholesterol metabolism in Mycobacterium smegmatis. Environ Microbiol Reports 4(2):168–182

    Google Scholar 

  • van der Geize R, Hessels GI, van Gerwen R, Vrijbloed JW, van der Meijden P, Dijkhuizen L (2000) Targeted disruption of the kstD gene encoding a 3-ketosteroid delta(1)-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1. Appl Environ Microbiol 66:2029–2036

    Article  Google Scholar 

  • van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L (2001a) Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid delta-(1)-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter selectable marker. FEMS Microbiol Lett 205:197–202

    Article  Google Scholar 

  • van der Geize R, Hessels GI, Dijkhuizen L (2001b) Microbial 9α-hydroxylation of steroids. WO Patent 01/31050

  • van der Geize R, Hessels GI, van Gerwen R, van der Meijden R, Dijkhuizen L (2002a) Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid-9-alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol 45:1007–1018

    Article  Google Scholar 

  • van der Geize R, Hessels GI, Dijkhuizen L (2002b) Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid delta(1)-dehydrogenase isoenzyme. Microbiol-SGM 148:3285–3292

    Google Scholar 

  • van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Nat Acad Sci USA 104:1947–1952

    Article  CAS  Google Scholar 

  • van der Geize R, Hessels GI, Nienhuis-Kuiper M, Dijkhuizen L (2008) Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9α-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB. Appl Env Microbiol 74:7197–7203

    Article  CAS  Google Scholar 

  • van der Geize R, Hessels GI, Dijkhuizen L (2009) Methods fort he production of modified steroid degrading microorganisms and their use. WO Patent 2009024572

  • van der Geize R, Grommen AWF, Hessels GI, Jacobs AAC, Dijkhuizen L (2011) The steroid catabolic pathway of the intracellular pathogen rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog 7(8):e1002181

    Article  CAS  Google Scholar 

  • Vidrna L, Černý I, Pouzar V, Borovská J, Vyklický V, Vyklický LJ, Chodounská H (2011) Azido analogs of neuroactive steroids. Steroids 76:1043–1050

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Hao X, Chen D, Li D (2004) Model of bioconversion of cholesterol in cloud point system. Biochem Eng J 19:9–13

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Chen D, Li D (2005) Cloud point system as a tool to improve the efficiency of biotransformation. Enzyme Microb Technol 36(4):589–594

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Chen D, Li D (2006) Biotransformation of phytosterol to produce androstadienedione by resting cells Mycobacterium in cloud point system. Process Biochem 41(3):557–561

    Article  CAS  Google Scholar 

  • Wang F-Q, Li B, Wang W, Zhang CG, Wei D-Z (2007) Biotransformation of diosgenin to nuatigenin-type steroid by a newly isolated strain, Streptomyces virginiae IBL-14. Appl Microbiol Biotechnol 77:771–777

    Article  CAS  Google Scholar 

  • Wang Z, Xu J-H, Chen D (2008) Whole cell microbial transformation in cloud point system. J Ind Microbiol Biotechnol 35:645–656

    Article  CAS  Google Scholar 

  • Wang F-Q, Zhang CG, Li B, Wei D-Z, Tong WY (2009a) New microbiological transformations of steroids by Streptomyces virginiae IBL-14. Environ Sci Technol 43:5967–5974

    Article  CAS  Google Scholar 

  • Wang W, Wang FQ, Wei DZ (2009b) Characterization of P450 FcpC, the enzyme responsible for bioconversion of diosgenone to isonuatigenone in Streptomyces virginiae IBL-14. Appl Environ Microbiol 75:4202–4205

    Article  CAS  Google Scholar 

  • Wang M, Zhang L, Shen Y, Ma Y, Zheng Y, Luo J (2009c) Effects of hydroxypropyl-β-cyclodextrin on steroids 1-en-dehydrogenation biotransformation by Arthrobacter simplex TCCC 11037. J Mol Cat B: Enzym 59(1–3):58–63

    Article  CAS  Google Scholar 

  • Wang F-Q, Yao K, Wei D-Z (2011) From soybean phytosterols to steroid hormones. In: El-Shemy H (ed) Soybean and health. InTech—Open Access Publisher, Rijeka, pp 232–252

    Google Scholar 

  • Waters CM, Bonnie L (2005) Bassler Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  Google Scholar 

  • Wei W, Wang FQ, Fan SY, Wei DZ (2010) Inactivation and augmentation of the primary 3-ketosteroid-delta(1)-dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene-3,17-dione or 1,4-androstadiene-3,17-dione. Appl Environ Microbiol 76:4578–4582

    Article  CAS  Google Scholar 

  • Wendhausen R, Frigato M, Fernandes P, Carvalho CCCR, Cruz A, Pinheiro HM, Cabral JMS (2005) Chrysotile as a support for the bioconversion of β-sitosterol in an organic-aqueous two-phase system. J Mol Catal B: Enzym 32:61–65

    Article  CAS  Google Scholar 

  • Wilbrink MH (2011) Microbiol sterol side chain degradation in Actinobacteria. Dissertation, University of Groningen

  • Wilbrink MH, Petrusma M, Dijkhuizen L, van der Geize R (2011) FadD19 of Rhodococcus rhodochrous DSM43269, a steroid-coenzyme a ligase essential for degradation of C-24 branched sterol side chains. Appl Envir Microbiol 77(13):4455–4464

    Article  CAS  Google Scholar 

  • Wu D-X, Guan Y-X, Wang H-Q, Yao S-J (2011) 11α-Hydroxylation of 16α,17-epoxyprogesterone by Rhizopus nigricans in a biphasic ionic liquid aqueous system. Bioresour Technol 102:9368–9373

    Article  CAS  Google Scholar 

  • Xiong Z, Wei Q, Chen H, Chen S, Xu W, Qiu G, Liang S, Hu X (2006) Microbial transformation of androst-4-ene-3,17-dione by Beauveria bassiana. Steroids 71:979–983

    Article  CAS  Google Scholar 

  • Yang J, Yang S, Yang YL, Zheng H, Weng L, Liu L (2007) Microbial hydroxylation of 16α,17α-dimethyl-17β-(l-oxopropyl)androsta-l,4-dien-3-one to rimexolone by Curvularia lunata AS 3.4381. J Mol Cat B: Enzym 47:155–158

    Article  CAS  Google Scholar 

  • Yildirim K, Kupcu I, Gulsan F (2010) Biotransformation of some steroids by Aspergillus wentii. Z Naturforsch C 65(11–12):688–692

    CAS  Google Scholar 

  • Young RB, Borch T (2009) Sources, presence, analysis, and fate of steroid sex hormones in freshwater ecosystems—a review. In: Nairne GH (Ed), Aquatic Ecosystem Research Trends, Nova Science Publishers, Inc, pp 103–164

  • Zakham F, Belayachi L, Ussery D, Akrim M, Benjouad A, Aouad REl, EnnalI MM (2011) Mycobacterial species as case-study of comparative genome analysis. Cell Mol Biol 57(supp):1462–1469

    Google Scholar 

  • Zehentgruber D, Dragan C-A, Bureik M, Lutz S (2010) Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. J Biotechnol 146(4):179–185

    Article  CAS  Google Scholar 

  • Zhang B, Zhu H, Liu X (2004) Effect of supercritical fluids on C11β-hydroxylation activity of Absidia coerulea. Biotechnol Prog 20:1885–1887

    Article  CAS  Google Scholar 

  • Zhang L, Wang M, Shen Y, Ma Y, Luo J (2009) Improvement of steroid biotransformation with hydroxypropyl-β-cyclodextrin induced complexation. Appl Biochem Biotechnol 159:642–654

    Article  CAS  Google Scholar 

  • Zhang W, Cui L, Wu M, Zhang R, Xie L, Wang H (2011) Transformation of prednisolone to a 20β-hydroxy prednisolone compound by Streptomyces roseochromogenes TS79. Appl Microbiol Biotechnol 92(4):727–735

    Google Scholar 

  • Zheng LY, Luo WY, Lin JL, Zheng HJ (2006) Production status and sustainable development strategies of diosgenin in China. Guangxi Trop Agricul 105:35–36 (In Chinese)

    Google Scholar 

  • Zhou H, Lu W, Wen J, Ma L (2009) Kinetic analysis of 11[alpha]-hydroxylation of steroids by Rhizopus nigricans. J Mol Cat B: Enzym 56:136–141

    Article  CAS  Google Scholar 

  • Žnidaršič P, Pavko A (2001) The morphology of filamentous fungi in submerged cultivation as a bioprocess parameter. Food Technol Biotechnol 39:237–252

    Google Scholar 

  • Žnidaršič-Plazl P, Plazl I (2010) Development of a continuous steroid biotransformation process and product extraction within microchannel system. Catal Today 157:315–320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina V. Donova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donova, M.V., Egorova, O.V. Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94, 1423–1447 (2012). https://doi.org/10.1007/s00253-012-4078-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4078-0

Keywords

Navigation