Skip to main content
Log in

The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Archaea utilize a branched modification of the classical Entner–Doudoroff (ED) pathway for sugar degradation. The semi-phosphorylative branch merges at the level of glyceraldehyde 3-phosphate (GAP) with the lower common shunt of the Emden-Meyerhof-Parnas pathway. In Sulfolobus solfataricus two different GAP converting enzymes—classical phosphorylating GAP dehydrogenase (GAPDH) and the non-phosphorylating GAPDH (GAPN)—were identified. In Sulfolobales the GAPN encoding gene is found adjacent to the ED gene cluster suggesting a function in the regulation of the semi-phosphorylative ED branch. The biochemical characterization of the recombinant GAPN of S. solfataricus revealed that—like the well-characterized GAPN from Thermoproteus tenax—the enzyme of S. solfataricus exhibits allosteric properties. However, both enzymes show some unexpected differences in co-substrate specificity as well as regulatory fine-tuning, which seem to reflect an adaptation to the different lifestyles of both organisms. Phylogenetic analyses and database searches in Archaea indicated a preferred distribution of GAPN (and/or GAP oxidoreductase) in hyperthermophilic Archaea supporting the previously suggested role of GAPN in metabolic thermoadaptation. This work suggests an important role of GAPN in the regulation of carbon degradation via modifications of the EMP and the branched ED pathway in hyperthermophilic Archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ED:

Entner–Doudoroff

sp:

Semi-phosphorylative

np:

Non-phosphorylative

EMP:

Embden-Meyerhof-Parnas

G1P:

Glucose 1-phosphate

GAP:

Glyceraldehyde 3-phosphate

GAPN:

Non-phosphorylating GAP dehydrogenase

GAPDH:

GAP dehydrogenase

GAPOR:

GAP oxidoreductase

KDG:

2-Keto-3-deoxygluconate

KDPG:

2-Keto-3-deoxy-6-phosphogluconate

References

  • Ahmed H, Ettema TJ, Tjaden B, Geerling AC, Van der Oost J, Siebers B (2005) The semi-phosphorylative Entner–Doudoroff pathway in hyperthermophilic Archaea: a re-evaluation. Biochem J 390:529–540

    Article  PubMed  CAS  Google Scholar 

  • Boyd DA, Cvitkovitch DG, Hamilton IR (1995) Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans. J Bacteriol 177:2622–2627

    PubMed  CAS  Google Scholar 

  • Brinkman AB, Bell SD, Lebbink RJ, De Vos WM, Van der Oost J (2002) The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. J Biol Chem 277:29537–29549

    Article  PubMed  CAS  Google Scholar 

  • Brouns SJ, Walther J, Snijders AP, Van de Werken HJ, Willemen HL, Worm P, De Vos MG, Andersson A, Lundgren M, Mazon HF, Van den Heuvel RH, Nilsson P, Salmon L, De Vos WM, Wright PC, Bernander R, Van der Oost J (2006) Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment. J Biol Chem 281:27378–27388

    Article  PubMed  CAS  Google Scholar 

  • Brunner NA, Hensel R (2001) Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. Methods Enzymol 331:117–131

    Article  PubMed  CAS  Google Scholar 

  • Brunner NA, Brinkmann H, Siebers B, Hensel R (1998) NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties. J Biol Chem 273:6149–6156

    Article  PubMed  CAS  Google Scholar 

  • Brunner NA, Siebers B, Hensel R (2001) Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden-Meyerhof-Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level. Extremophiles 5:101–109

    Article  PubMed  CAS  Google Scholar 

  • Buchanan CL, Connaris H, Danson MJ, Reeve CD, Hough DW (1999) An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. Biochem J 343:563–570

    Article  PubMed  CAS  Google Scholar 

  • Cobessi D, Tete-Favier F, Marchal S, Azza S, Branlant G, Aubry A (1999) Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans. J Mol Biol 290:161–173

    Article  PubMed  CAS  Google Scholar 

  • Condo I, Ciammaruconi A, Benelli D, Ruggero D, Londei P (1999) Cis-acting signals controlling translational initiation in the thermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 34:377–384

    Article  PubMed  CAS  Google Scholar 

  • Corwin LM, Fanning GR (1968) Studies of parameters affecting the allosteric nature of phosphoenolpyruvate carboxylase of Escherichia coli. J Biol Chem 243:3517–3525

    PubMed  CAS  Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B, Giardina P, Poerio E, Buonocore V (1984) Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J 224:407–414

    PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275:14031–14037

    Article  PubMed  CAS  Google Scholar 

  • Giardina P, de Biasi MG, de Rosa M, Gambacorta A, Buonocore V (1986) Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J 239:517–522

    PubMed  CAS  Google Scholar 

  • Gotz F, Schleifer KH (1975) Purification and properties of a fructose-1,6-diphosphate activated L-lactate dehydrogenase from Staphylococcus epidermidis. Arch Microbiol 105:303–312

    Article  PubMed  CAS  Google Scholar 

  • Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719

    PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Sys Biol 52:696–704

    Article  Google Scholar 

  • Habenicht A (1997) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase: biochemistry, structure, occurrence and evolution. Biol Chem 378:1413–1419

    PubMed  CAS  Google Scholar 

  • Johnsen U, Selig M, Xavier KB, Santos H, Schönheit P (2001) Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus. Arch Microbiol 175:52–61

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  • Jung JH, Lee SB (2006) Identification and characterization of Thermoplasma acidophilum glyceraldehyde dehydrogenase: a new class of NADP+-specific aldehyde dehydrogenase. Biochem J 397:131–138

    Article  PubMed  CAS  Google Scholar 

  • Jung JH, Lee SB (2005) Identification and characterization of Thermoplasma acidophilum 2-keto-3-deoxy-d-gluconate kinase: a new class of sugar kinases. Biotechnol Bioprocess Eng 10:535–539

    CAS  Google Scholar 

  • Kardinahl S, Schmidt CL, Hansen T, Anemuller S, Petersen A, Schäfer G (1999) The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme—an aldehyde oxidoreductase. Eur J Biochem 260:540–548

    Article  PubMed  CAS  Google Scholar 

  • Kehrer D, Ahmed H, Brinkmann H, Siebers B (2007) Glycerate kinase of the hyperthermophilic Archaeon Thermoproteus tenax: new insights in the phylogenetic distribution and physiological role of members of the three different glycerate kinase families (Submitted BMC genomics)

  • Kim S, Lee SB (2005) Identification and characterization of Sulfolobus solfataricus d-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner–Doudoroff pathway. Biochem J 387:271–280

    Article  PubMed  CAS  Google Scholar 

  • Labes A, Schönheit P (2001) Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming) Arch Microbiol 176:329–338

  • Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson MJ (2003) Metabolic pathway promiscuity in the Archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase. J Biol Chem 278:34066–34072

    Article  PubMed  CAS  Google Scholar 

  • Lamble HJ, Milburn CC, Taylor GL, Hough DW, Danson MJ (2004) Gluconate dehydratase from the promiscuous Entner–Doudoroff pathway in Sulfolobus solfataricus. FEBS Lett 576:133–136

    Article  PubMed  CAS  Google Scholar 

  • Lamble HJ, Theodossis A, Milburn CC, Taylor GL, Bull SD, Hough DW, Danson MJ (2005) Promiscuity in the part-phosphorylative Entner–Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 579:6865–6869

    Article  PubMed  CAS  Google Scholar 

  • LeJohn HB, Jackson S (1968) Allosteric interactions of a regulatory nicotinamide adenine dinucleotide-specific glutamate dehydrogenase from Blastocladiella: a molecular model for the enzyme. J Biol Chem 243:3447–3457

    PubMed  CAS  Google Scholar 

  • Lorentzen E, Hensel R, Knura T, Ahmed H, Pohl E (2004) Structural basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase from Thermoproteus tenax. J Mol Biol 341:815–828

    Article  PubMed  CAS  Google Scholar 

  • Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A, Zhao X, Dubchak I, Hugenholtz P, Anderson I, Lykidis A, Mavromati K, Ivanova N, Kyrpides NC (2006) The integrated microbial genomes (IMG) system. Nucleic Acids Res 34:D344–D348

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Atomi H, Imanaka T (2006) A genetic analysis on enzymes involved in the conversion of glyceraldehyde 3-phosphate in the hyperthermophilic archaeon, Thermococcus kodakaraensis. Poster contribution. In: The 6th International Congress on Extremophiles, Brest, France

  • Milburn CC, Lamble HJ, Theodossis A, Bull SD, Hough DW, Danson MJ, Taylor GL (2006) The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Biol Chem 281:14796–14804

    Article  PubMed  CAS  Google Scholar 

  • Mukund S, Adams MW (1991) The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. J Biol Chem 266:14208–14216

    PubMed  CAS  Google Scholar 

  • Mukund S, Adams MW (1995) Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 270:8389–8392

    Article  PubMed  CAS  Google Scholar 

  • Perozich J, Kuo I, Wang BC, Boesch J S, Lindahl R, Hempel J (2000) Shifting the NAD/NADP preference in class 3 aldehyde dehydrogenase. Eur J Biochem 267:6197–6203

    Article  PubMed  CAS  Google Scholar 

  • Pohl E, Brunner N, Wilmanns M, Hensel R (2002) The crystal structure of the allosteric non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeum Thermoproteus tenax. J Biol Chem 277:19938–19945

    Article  PubMed  CAS  Google Scholar 

  • Reher M, Schönheit P (2006) Glyceraldehyde dehydrogenases from the thermoacidophilic euryarchaeota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non-phosphorylative Entner–Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily. FEBS Lett 580:1198–1204

    Article  PubMed  CAS  Google Scholar 

  • Reher M, Bott M, Schönheit P (2006) Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner–Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus. FEMS Microbiol Lett 259:113–119

    Article  PubMed  CAS  Google Scholar 

  • Ronimus RS, Morgan HW (2002) Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from Archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Archaea 1:199–221

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Schäfer T, Schönheit P (1993) Gluconeogensis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus-involvement of reactions of the Embden-Meyerhof pathway. Arch Microbiol 159:254–363

    Google Scholar 

  • Schicho RN, Snowden LJ, Mukund S, Park JB, Adams MW, Kelly RM (1993) Influence of tungsten on metabolic patterns in Pyrococcus furiosus, a hyperthermophilic Archaeon. Arch Microbiol 159:380–385

    Article  CAS  Google Scholar 

  • Schut GJ, Brehm SD, Datta S, Adams MW (2003) Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol 185:3935–3947

    Article  PubMed  CAS  Google Scholar 

  • Schramm A, Siebers B, Tjaden B, Brinkmann H, Hensel R (2000) Pyruvate kinase of the hyperthermophilic crenarchaeote Thermoproteus tenax: physiological role and phylogenetic aspects. J Bacteriol 182:2001–2009

    Article  PubMed  CAS  Google Scholar 

  • Selig M, Schönheit P (1994) Oxidation of organic-compounds to CO2 with sulfur or thiosulfate as electron-acceptor in the anaerobic hyperthermophilic Archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric-acid cycle. Arch Microbiol 162:286–294

    Article  CAS  Google Scholar 

  • Selig M, Xavier KB, Santos H, Schönheit P (1997) Comparative analysis of Embden-Meyerhof and Entner–Doudoroff glycolytic pathways in hyperthermophilic Archaea and the bacterium Thermotoga. Arch Microbiol 167:217–232

    PubMed  CAS  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  PubMed  CAS  Google Scholar 

  • Siebers B, Hensel R (1993) Glucose catabolism of the hyperthermophilic Aarchaeum Thermoproteus tenax. FEMS Microbiol Lett 111:1–8

    Article  CAS  Google Scholar 

  • Siebers B, Schönheit P (2005) Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 8:695–705

    Article  PubMed  CAS  Google Scholar 

  • Siebers B, Wendisch VF, Hensel R (1997) Carbohydrate metabolism in Thermoproteus tenax: in vivo utilization of the non-phosphorylative Entner–Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase. Arch Microbiol 168:120–127

    Article  PubMed  CAS  Google Scholar 

  • Siebers B, Brinkmann H, Dörr C, Tjaden B, Lilie H, Van der Oost J, Verhees CH (2001) Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase. J Biol Chem 276:28710–28718

    Article  PubMed  CAS  Google Scholar 

  • Siebers B, Tjaden B, Michalke K, Dörr C, Ahmed H, Zaparty M, Gordon P, Sensen CW, Zibat A, Klenk HP, Schuster SC, Hensel R (2004) Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol 186:2179–2194

    Article  PubMed  CAS  Google Scholar 

  • Slupska MM, King AG, Fitz-Gibbon S, Besemer J, Borodovsky M, Miller JH (2001) Leaderless transcripts of the crenarchaeal hyperthermophile Pyrobaculum aerophilum. J Mol Biol 309:347–360

    Article  PubMed  CAS  Google Scholar 

  • Snijders AP, Walther J, Peter S, Kinnman I, De Vos MG, Van de Werken HJ, Brouns SJ, Van der Oost J, Wright PC (2006) Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 6:1518–1529

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic Archaebacteria. Sys App Microbiol 10:172–173

    Google Scholar 

  • Theodossis A, Walden H, Westwick EJ, Connaris H, Lamble HJ, Hough DW, Danson MJ, Taylor GL (2004) The structural basis for substrate promiscuity in 2-keto-3-deoxygluconate aldolase from the Entner–Doudoroff pathway in Sulfolobus solfataricus. J Biol Chem 279:43886–43892

    Article  PubMed  CAS  Google Scholar 

  • Tolstrup N, Sensen CW, Garrett RA, Clausen IG (2000) Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus. Extremophiles 4:175–179

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson GA, Koch TK, Hochstein LI (1974) The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner–Doudoroff pathway. Can J Microbiol 20:1085–1091

    Article  CAS  Google Scholar 

  • Van der Oost J, Schut G, Kengen SW, Hagen WR, Thomm M, De Vos WM (1998) The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation. J Biol Chem 273:28149–28154

    Article  PubMed  Google Scholar 

  • Verhees CH, Kengen SWM, Tuininga JE, Schut GJ, Adams MW, De Vos WM, Van der Oost J (2003) The unique features of glycolytic pathways in Archaea. Biochem J 375:231–246; errata notification:(2004) Biochem J 377:819–822

    Google Scholar 

  • Yoshida A, Rzhetsky A, Hsu LC, Chang C (1998) Human aldehyde dehydrogenase gene family. Eur J Biochem 251:549–557

    Article  PubMed  CAS  Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Wunderl S, Priess H, Scholz J (1980) The Sulfolobus-”Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SPP 1112, SI642/6-1) and by a Rubicon grant to T.E. from the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Siebers.

Additional information

Communicated by D.A. Cowan.

Thijs J. G. Ettema and Hatim Ahmed have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ettema, T.J.G., Ahmed, H., Geerling, A.C.M. et al. The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway. Extremophiles 12, 75–88 (2008). https://doi.org/10.1007/s00792-007-0082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0082-1

Keywords

Navigation