Skip to main content
Log in

Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of l-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L−1, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L−1 after 84-h cultivation. Under optimal urea supplementation, l-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L−1 after 120-h flask cultivation and 26.32 g L−1 after 60-h fed-batch fermentation. The conversion ratio of l-glutamate to GABA reached 0.60–0.74 mol mol−1. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated l-glutamate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes l-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319

    Article  PubMed  CAS  Google Scholar 

  2. Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276:244–250

    Article  PubMed  CAS  Google Scholar 

  3. Hara Y, Kadotani N, Izui H, Katashkina JI, Kuvaeva TM, Andreeva IG, Golubeva LI, Malko DB, Makeev VJ, Mashko SV, Kozlov YI (2012) The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential. Appl Microbiol Biotechnol 93:331–341

    Article  PubMed  Google Scholar 

  4. Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y (2004) Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats. Br J Nutr 92:411–417

    Article  PubMed  CAS  Google Scholar 

  5. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  PubMed  CAS  Google Scholar 

  6. Hiraga K, Ueno Y, Oda K (2008) Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Biosci Biotechnol Biochem 72:1299–1306

    Article  PubMed  CAS  Google Scholar 

  7. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  PubMed  CAS  Google Scholar 

  8. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  PubMed  CAS  Google Scholar 

  9. Karatzas KA, Brennan O, Heavin S (2010) Intracellular accumulation of high levels of gamma-aminobutyrate by Listeria monocytogenes 10403S in response to low pH: uncoupling of gamma-aminobutyrate synthesis from efflux in a chemically defined medium. Appl Environ Microbiol 76:3529–3537

    Article  PubMed  CAS  Google Scholar 

  10. Kennerknecht N, Sahm H, Yen MR, Patek M, Saier MH, Eggeling L (2002) Export of l-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956

    Article  PubMed  CAS  Google Scholar 

  11. Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299

    Article  PubMed  CAS  Google Scholar 

  12. Koros A, Varga ZS, Molnar P (2008) Simultaneous analysis of amino acids and amines as their o-phthalaldehyde-ethanethiol-9-fluorenylmethyl chloroformate derivatives in cheese by high-performance liquid chromatography. J Chromatogr A 1203:146–152

    Article  PubMed  CAS  Google Scholar 

  13. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  PubMed  CAS  Google Scholar 

  14. Li HX, Cao YS (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39:1107–1116

    Article  PubMed  CAS  Google Scholar 

  15. Li HX, Qiu T, Gao DD, Cao YS (2010) Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 38:1439–1445

    Article  PubMed  CAS  Google Scholar 

  16. Li HX, Qiu T, Huang GD, Cao YS (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:85

    Article  PubMed  Google Scholar 

  17. Okada T, Sugishita T, Murakami T, Murai H, Saikusa T, Horino T, Onoda A, Kajimoto O, Takahashi R, Takahashi T (2000) Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. J Jpn Soc Food Sci 47:596–603

    Article  CAS  Google Scholar 

  18. Park KB, Oh SH (2007) Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresour Technol 98:312–319

    Article  PubMed  CAS  Google Scholar 

  19. Rehm N, Burkovski A (2011) Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum: influence on amino acid pools and production. Appl Microbiol Biotechnol 89:239–248

    Article  PubMed  CAS  Google Scholar 

  20. Sanchez B, Champomier-Verges MC, Collado Mdel C, Anglade P, Baraige F, Sanz Y, de los Reyes-Gavilan CG, Margolles A, Zagorec M (2007) Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Appl Environ Microbiol 70:6450–6459

    Article  Google Scholar 

  21. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310

    Article  PubMed  CAS  Google Scholar 

  22. Schuller HM, Al-Wadei HA, Majidi M (2008) Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis 29:1979–1985

    Article  PubMed  CAS  Google Scholar 

  23. Shi F, Li YX (2011) Synthesis of gamma-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC13032. Biotechnol Lett 33:2469–2474

    Article  PubMed  CAS  Google Scholar 

  24. Shiio I, Ozaki H (1970) Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J Biochem 68:633–647

    PubMed  CAS  Google Scholar 

  25. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M (2007) Synthesis of γ-amino butyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73:7283–7290

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A (2012) Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzym Microb Tech 51:171–176

    Article  CAS  Google Scholar 

  27. Tamura T, Noda M, Ozaki M, Maruyama M, Matoba Y, Kumagai T, Sugiyama M (2010) Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves. Bio Pharm Bull 33:1673–1679

    Article  CAS  Google Scholar 

  28. Tramonti A, De Canio M, Delany I, Scarlato V, De Biase D (2006) Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in Escherichia coli. J Bacteriol 188:8118–8127

    Article  PubMed  CAS  Google Scholar 

  29. Tujioka K, Ohsumi M, Horie K, Kim M, Hayase K, Yokogoshi H (2009) Dietary gamma-aminobutyric acid affects the brain protein synthesis rate in ovariectomized female rats. J Nutr Sci Vitaminol 55:75–80

    Article  PubMed  CAS  Google Scholar 

  30. Ueno H (2000) Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal 10:67–79

    Article  CAS  Google Scholar 

  31. Wong CG, Bottiglieri T, Snead OC (2003) GABA, gamma-hydroxybutyric acid, and neurological disease. Ann Neurol 54:S3–S12

    Article  PubMed  CAS  Google Scholar 

  32. Xu DQ, Tan YZ, Huan XJ, Hu XQ, Wang XY (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Methods 80:86–92

    Article  PubMed  CAS  Google Scholar 

  33. Xu DQ, Tan YZ, Shi F, Wang XY (2010) An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid 64:85–91

    Article  PubMed  CAS  Google Scholar 

  34. Yao WJ, Deng XZ, Zhong H, Liu M, Zheng P, Sun ZH, Zhang Y (2009) Double deletion of dtsR1 and pyc induce efficient l-glutamate overproduction in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 36:911–921

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Song L, Gao Q, Yu SM, Li L, Gao NF (2012) The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl Microbiol Biotechnol 94:1619–1627

    Article  PubMed  CAS  Google Scholar 

  36. Zhao Z, Ding JY, Ma WH, Zhou NY, Liu SJ (2012) Identification and characterization of γ-aminobutyric acid uptake system GabP Cg (NCgl0464) in Corynebacterium glutamicum. Appl Environ Microbiol 78:2596–2601

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Program of State Key Laboratory of Food Science and Technology (contract no. SKLF-TS-201103) and the Fundamental Research Funds for the Central Universities (contract no. JUSRP 21109) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi.

Additional information

F. Shi and J. Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, F., Jiang, J., Li, Y. et al. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis . J Ind Microbiol Biotechnol 40, 1285–1296 (2013). https://doi.org/10.1007/s10295-013-1316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1316-0

Keywords

Navigation