Skip to main content
Log in

Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum: influence on amino acid pools and production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrogen is one of the macronutrients necessary for living cells, and consequently, assimilation of nitrogen is a crucial step for metabolism. To satisfy their nitrogen demand and to ensure a sufficient nitrogen supply even in situations of nitrogen limitation, microorganisms have evolved sophisticated uptake and assimilation mechanisms for different nitrogen sources. This mini-review focuses on nitrogen metabolism and its control in the biotechnology workhorse Corynebacterium glutamicum, which is used for the industrial production of more than 2 million tons of l-amino acids annually. Ammonium assimilation and connected control mechanisms on activity and transcription level are summarized, and the influence of mutations on amino acid pools and production is described with emphasis on l-glutamate, l-glutamine, and l-lysine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amon J, Titgemeyer F, Burkovski A (2010) Common patterns—unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev 34:588–605

    CAS  Google Scholar 

  • Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamutsa T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319

    Article  CAS  Google Scholar 

  • Becker J, Klopprogge C, Schröder H, Wittmann C (2009) Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:7866–7869

    Article  CAS  Google Scholar 

  • Beckers G, Nolden L, Burkovski A (2001) Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147:2961–2970

    CAS  Google Scholar 

  • Beckers G, Strösser J, Hildebrandt U, Kalinowski J, Farwick M, Krämer R, Burkovski A (2005) Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon. Mol Microbiol 58:580–595

    Article  CAS  Google Scholar 

  • Börmann ER, Eikmanns BJ, Sahm H (1992) Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol 6:317–326

    Article  Google Scholar 

  • Börmann-El Kholy ER, Eikmanns BJ, Gutmann M, Sahm H (1993) Glutamate dehydrogenase is not essential for glutamate formation in Corynebacterium glutamicum. Appl Environ Microbiol 59:2329–2331

    Google Scholar 

  • Bott M (2007) Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol 15:417–425

    Article  CAS  Google Scholar 

  • Boulahya K-A, Guedon E, Delaunay S, Schultz C, Boudrant J, Bott M, Goergen J-L (2010) OdhI dephosphorylation kinetics during different glutamate production processes involving Corynebacterium glutamicum. Appl Microbiol Biotechnol 87:1867–1874

    Article  CAS  Google Scholar 

  • Buchinger S, Strösser J, Rehm N, Hänßler E, Hans S, Bathe B, Schomburg D, Krämer R, Burkovski A (2009) A combination of transcriptome and metabolome analyses reveals new targets of the Corynebacterium glutamicum nitrogen regulator AmtR. J Biotechnol 140:68–74

    Article  CAS  Google Scholar 

  • Burkovski A (2005) Nitrogen metabolism and its regulation. In: Bott M, Eggeling L (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 333–349

    Google Scholar 

  • Hänßler E, Burkovski A (2008) Molecular mechanisms of nitrogen control in corynebacteria. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Norfolk, pp 183–201

    Google Scholar 

  • Hänßler E, Müller T, Palumbo K, Patek M, Brocker M, Krämer R, Burkovski A (2009) A game with many players: regulation of gdh transcription in Corynebacterium glutamicum. J Biotechnol 142:114–122

    Article  Google Scholar 

  • Hayashi M, Maeda M, Yonetani Y (2008) Method for production of L-glutamine. EP1978094A1

  • Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisakova V, Patek M, Kalinowski J, Brune I, Pühler A, Tauch A (2005) Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71:3255–3268

    Article  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  Google Scholar 

  • Jakoby M, Tesch M, Sahm H, Krämer R, Burkovski A (1997) Isolation of the Corynebacterium glutamicum glnA gene encoding glutamine synthetase I. FEMS Microbiol Lett 154:81–88

    Article  CAS  Google Scholar 

  • Jakoby M, Krämer R, Burkovski A (1999) Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS Microbiol Lett 173:303–310

    Article  CAS  Google Scholar 

  • Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A (2000) AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37:964–977

    Article  CAS  Google Scholar 

  • Jessberger N, Burkovski A, Bathe B, Reth A (2009) Method for manufacturing L-amino acids. WO2009/141330A1

  • Kalinowski J, Bathe B, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey D, Rückert C, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  Google Scholar 

  • Kalinowski J, Wolters D, Poetsch A (2008) Proteomics of Corynebacterium glutamicum and other corynebacteria. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Norfolk, pp 55–78

    Google Scholar 

  • Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1109–1112

    Article  CAS  Google Scholar 

  • Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H (2009) Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 81:1097–1106

    Article  CAS  Google Scholar 

  • Kim J, Fukuda H, Hirasawa T, Nagahisa K, Nagai K, Wachi M, Shimizu H (2010) Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 86:911–920

    Article  CAS  Google Scholar 

  • Kimura K (1962) The significance of glutamic dehydrogenase in glutamic acid fermentation. J Gen Appl Microbiol 8:253–260

    Article  CAS  Google Scholar 

  • Kind S, Jeong WK, Schröder H, Wittmann C (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12:341–351

    Article  CAS  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation. Part I. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 50:331–343

    Google Scholar 

  • Krawczyk S, Raasch K, Schultz C, Hoffelder M, Eggeling L, Bott M (2010) The FHA domain of OdhI interacts with the carboxyterminal 2-oxoglutarate dehydrogenase domain of OdhA in Corynebacterium glutamicum. FEBS Lett 584:1463–1468

    Article  CAS  Google Scholar 

  • Kumar R, Shimizu K (2010) Metabolic regulation of Escherichia coli and its gdhA, glnL, gltB, D mutants under different carbon and nitrogen limitations in continuous culture. Microbial Cell Fact 9:8

    Article  Google Scholar 

  • Kusumoto I (2001) Industrial production of L-glutamine. J Nutr 131:2552S–2555S

    CAS  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  CAS  Google Scholar 

  • Li J, Ma C, Ma Y, Li Y, Zhou W, Xu P (2007) Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production. Appl Microbiol Biotechnol 74:563–571

    Article  CAS  Google Scholar 

  • Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production. Appl Environ Microbiol 74:7457–7462

    Article  CAS  Google Scholar 

  • Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187:7639–7646

    Article  CAS  Google Scholar 

  • Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng 1:35–48

    Article  CAS  Google Scholar 

  • Matsuzaki Y, Nakamura J, Hashiguchi K (2004) Method for producing L-arginine or L-lysine by fermentation. EP1460128A1

  • Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Krämer R, Burkovski A (2001) Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. Microbiology 147:135–143

    CAS  Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71:2130–2135

    Article  CAS  Google Scholar 

  • Misono H, Soda K (1980) Properties of meso-α, ε-diaminopimelate D-dehydrogenase from Bacillus sphaericus. J Biol Chem 255:10599–10605

    CAS  Google Scholar 

  • Müller T, Strösser J, Buchinger S, Nolden L, Wirtz A, Krämer R, Burkovski A (2006) Mutation-induced metabolite pool alterations in Corynebacterium glutamicum: towards the identification of nitrogen control signals. J Biotechnol 126:440–453

    Article  Google Scholar 

  • Nakamura J, Izui H, Moriguchi K, Kawashima H, Nakamatsu T, Kurahashi O (2002) Method for producing L-glutamine by fermentation and L-glutamine producing bacterium. EP1229121A2

  • Nakamura J, Izui H, Moriguchi K, Kawashima H, Nakamatsu T, Kurahashi O (2004) Method for producing L-glutamine by fermentation and L-glutamine producing bacterium. EP1424398A2

  • Nakamura J, Hirano S, Ito H, Wachi M (2007) Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol 73:4491–4498

    Article  CAS  Google Scholar 

  • Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307

    Article  CAS  Google Scholar 

  • Nolden L, Farwick M, Krämer R, Burkovski A (2001a) Glutamine synthetases in Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett 201:91–98

    Article  CAS  Google Scholar 

  • Nolden L, Ngouoto-Nkili C-E, Bendt AK, Krämer R, Burkovski A (2001b) Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. Mol Microbiol 42:1281–1295

    Article  CAS  Google Scholar 

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    Article  CAS  Google Scholar 

  • Oshima K, Tanaka K, Kinoshita S (1964) Studies on glutamic acid fermentation. XI. Purification and properties of L-glutamic acid dehydrogenase from Micrococcus glutamicus. Agric Biol Chem 28:714–722

    CAS  Google Scholar 

  • Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L (2005) Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology 151:1359–1368

    Article  CAS  Google Scholar 

  • Ramos JL, Martinéz-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356

    Article  CAS  Google Scholar 

  • Rehm N, Buchinger S, Strösser J, Walter B, Hans S, Bathe B, Schomburg D, Krämer R, Burkovski A (2010a) Impact of adenylyltransferase GlnE on nitrogen starvation response in Corynebacterium glutamicum. J Biotechnol 145:244–252

    Article  CAS  Google Scholar 

  • Rehm N, Georgi T, Hiery E, Degner U, Schmiedl A, Burkovski A, Bott M (2010b) L-Glutamine as nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing. Microbiology. doi:10.1099/mic.0.040667-0

    Google Scholar 

  • Reitzer LJ, Magasanik B (1987) Ammonium assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine. In: Neidthardt EC, Ingraham JL, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella. American Society of Microbiology, Washington, pp 302–320

    Google Scholar 

  • Sahm H, Eggeling L, de Graaf AA (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899–910

    Article  CAS  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868. doi:10.1007/s00253-010-2778-x

    Article  CAS  Google Scholar 

  • Schrumpf B, Schwarzer A, Kalinowski J, Pühler A, Eggeling L, Sahm H (1991) A functionally split pathway for lysine synthesis in Corynebacterium glutamicum. J Bacteriol 173:4510–4516

    CAS  Google Scholar 

  • Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700

    Article  CAS  Google Scholar 

  • Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, Bott M (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741

    Article  CAS  Google Scholar 

  • Schulz AA, Collett HJ, Reid SJ (2001) Nitrogen and carbon regulation of glutamine synthetase and glutamate synthase in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 205:361–367

    Article  CAS  Google Scholar 

  • Shiio I, Ozaki H (1970) Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J Biochem 68:633–647

    CAS  Google Scholar 

  • Shiio I, Ujigawa-Takeda K (1980) Presence and regulation of α-ketoglutarate dehydrogenase complex in a glutamate-producing bacterium, Brevibacterium flavum. Agric Biol Chem 44:1897–1904

    CAS  Google Scholar 

  • Shimizu H, Hirasawa T (2007) Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg, pp 1–38

    Chapter  Google Scholar 

  • Shimizu H, Tanaka H, Nakato A, Nagahisa K, Kimura E, Shioya S (2003) Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Biosyst Eng 25:291–298

    CAS  Google Scholar 

  • Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori SH (2005) Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 7:59–69

    Article  CAS  Google Scholar 

  • Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Krämer R (1996) Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271:5398–5403

    Article  CAS  Google Scholar 

  • Silberbach M, Schäfer M, Hüser A, Kalinowski J, Pühler A, Krämer R, Burkovski A (2005) Adaptation of Corynebacterium glutamicum to ammonium-limitation: a global analysis using transcriptome and proteome techniques. Appl Environ Microbiol 71:2391–2402

    Article  CAS  Google Scholar 

  • Sindelar G, Wendisch VF (2007) Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol 76:677–689

    Article  CAS  Google Scholar 

  • Sonntag K, Eggeling L, de Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem 213:1325–1331

    Article  CAS  Google Scholar 

  • Strösser J, Lüdke A, Schaffer S, Krämer R, Burkovski A (2004) Regulation of GlnK activity: modification, membrane sequestration, and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum. Mol Microbiol 54:132–147

    Article  Google Scholar 

  • Suzuki N, Watanabe K, Okie N, Tsuchida Y, Inui M, Yukawa H (2009) Identification of new secreted proteins and secretion of heterologous amylase by Corynebacterium glutamicum. Appl Microbiol Biotechnol 82:491–500

    Article  CAS  Google Scholar 

  • Tachiki T, Wakisaka S, Kumagai H, Tochikura T (1981) Glutamine synthetase from Micrococcus glutamicus: effect of nitrogen sources in culture medium on enzyme formation and some properties of crystalline enzyme. Agric Biol Chem 45:1487–1492

    CAS  Google Scholar 

  • Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes—example: amino acids. J Biotechnol 129:181–190

    Article  CAS  Google Scholar 

  • Tateno T, Hatada K, Tanaka T, Fukuda H, Kondo A (2009) Development of novel surface display in Corynebacterium glutamicum using porin. Appl Microbiol Biotechnol 84:733–739

    Article  CAS  Google Scholar 

  • Tesch M, Eikmanns BJ, de Graaf AA, Sahm H (1998) Ammonia assimilation in Corynebacterium glutamicum and a glutamate dehydrogenase-deficient mutant. Biotechnol Lett 20:953–957

    Article  CAS  Google Scholar 

  • Tesch M, de Graaf AA, Sahm H (1999) In vivo fluxes in the ammonium-assimilatory pathways in Corynebacterium glutamicum studied by 15N nuclear magnetic resonance. Appl Environ Microbiol 65:1099–1109

    CAS  Google Scholar 

  • Tochikura T, Sung H-C, Tachiki T, Kumagai H (1984) Occurrence of glutamate synthase in Brevibacterium flavum. Agric Biol Chem 48:2149–2150

    CAS  Google Scholar 

  • Trötschel C, Kandirali S, Diaz-Achirica P, Meinhardt A, Morbach S, Krämer R, Burkovski A (2003) GltS, the sodium-coupled L-glutamate uptake system of Corynebacterium glutamicum: identification of the corresponding gene and impact on L-glutamate production. Appl Microbiol Biotechnol 60:738–742

    Google Scholar 

  • Udaka S (2008) The discovery of Corynebacterium glutamicum and birth of amino acid fermentation industry in Japan. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Norfolk, pp 1–6

    Google Scholar 

  • Uy D, Delauny S, Germain P, Engasser J-M, Goergen J-L (2003) Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J Biotechnol 104:173–184

    Article  CAS  Google Scholar 

  • Uy D, Delauny S, Goergen J-L, Engasser J-M (2005) Dynamics of glutamate synthesis and excretion fluxes in batch and continuous cultures of temperature-triggered Corynebacterium glutamicum. Bioprocess Biosyst Eng 27:153–162

    Article  CAS  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    Article  CAS  Google Scholar 

  • Wakisaka S, Tachiki T, Tochikura T (1990) Properties of Brevibacterium flavum glutamine synthetase in an “in vivo-like” system. J Ferm Bioeng 70:182–184

    Article  CAS  Google Scholar 

  • Walter B, Hänßler E, Kalinowski J, Burkovski A (2007) Nitrogen metabolism and nitrogen control in corynebacteria: variations of a common theme. J Mol Microbiol Biotechnol 12:131–138

    Article  CAS  Google Scholar 

  • Walter B, Küspert M, Ansorge A, Krämer R, Burkovski A (2008) Dissection of ammonium uptake systems in Corynebacterium glutamicum: mechanism and energetics of AmtA and AmtB. J Bacteriol 190:2611–2614

    Article  CAS  Google Scholar 

  • Wendisch VF (2008) DNA microarray-based transcriptome analysis of Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Norfolk, pp 33–54

    Google Scholar 

  • Wittmann C, Heinzle E (2008) Metabolic network analysis and design in Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Norfolk, pp 79–112

    Google Scholar 

  • Yan D (2007) Protection of the glutamate pool concentration in enteric bacteria. Proc Natl Acad Sci USA 104:9475–9480

    Article  CAS  Google Scholar 

  • Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work of the authors’ related to nitrogen metabolism and control was supported by the Deutsche Forschungsgemeinschaft (SFB473, SFB635) and the Bundesministerium für Bildung und Forschung (in frame of the programs GenoMik, GenoMik+, GenoMik-Transfer and SysMAP). The help of A. Reth (Evonik) with patent searches is gratefully aknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Burkovski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehm, N., Burkovski, A. Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum: influence on amino acid pools and production. Appl Microbiol Biotechnol 89, 239–248 (2011). https://doi.org/10.1007/s00253-010-2922-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2922-7

Keywords

Navigation