Skip to main content
Log in

Genetic manipulation of a primary metabolic pathway for l-ornithine production in Escherichia coli

  • Original Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Metabolic engineering has been used to improve l-ornithine biosynthesis in Escherichia coli W3110. l-Ornithine production increased from 0.3 to 3.2 mg/g (dry cell weight) when the primary l-ornithine biosynthetic pathway was optimized by disrupting the pathway transcription repressor, thereby increasing the expression of the genes involved in the pathway, and by preventing conversion of l-ornithine into citrulline. When a feedback-resistant N-acetylglutamate synthetase gene (argA214) was placed under the control of the arabinose-inducible promoter, either in the chromosome or on a multicopy plasmid in the cell, the combination of overexpression of argA214 with an argF argI argR triple knockout mutation had an additive effect on l-ornithine production but only when exogenous glutamate was present. When speF (which encodes ornithine decarboxylase) and proB (which encodes γ-glutamyl kinase) were inactivated to prevent the conversion of l-ornithine to putrescine and to block the biosynthesis of a side branch of l-ornithine, respectively, l-ornithine production was further enhanced approxi. 140% from 5.5 to 13.2 mg/g (dry cell weight).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Applebaum DM, Dunlap JC, Morris DR (1977) Comparison of the biosynthetic and biodegradative ornithine decarboxylase of Escherichia coli. Biochemistry 16:1580–1584

    Article  PubMed  CAS  Google Scholar 

  • Charlier D, Roovers F, Van Vliet F, Boyen A, Cunin R, Nakamura Y, Glansdorff N, Pierard A (1992) Arginine regulon of Escherichia coli K-12. A study of repressor-operator interactions and of in vitro binding affinities versus in vivo repression. J Mol Biol 226:367–386

    Article  PubMed  CAS  Google Scholar 

  • Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199:91–95

    PubMed  CAS  Google Scholar 

  • Choi DK, Ryu WS, Choi CY, Park YH (1996) Production of l-ornithine by arginine auxotrophic mutants of Brevibacterium ketoglutamicum in dual substrate-limited continuous culture. J Ferment Bioeng 81:216–219

    Article  CAS  Google Scholar 

  • Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352

    PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Güldener U, Susanne H, Thomas F, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  PubMed  Google Scholar 

  • Jensen KF (1993) The Escherichia coli K-12 “wild type” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrF expression levels. J Bacteriol 175:3401–3407

    PubMed  CAS  Google Scholar 

  • Kim SY, Cho JY (2005) A modified PCR-directed gene replacements method using λ-Red recombination functions in Escherichia coli. J Microbiol Biotechnol 15:1346–1352

    Google Scholar 

  • Kiupakis AK, Reitzer L (2002) ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184:2940–2950

    Article  PubMed  CAS  Google Scholar 

  • Legrain C, Stalon V, Glansdorff N (1976) Escherichia coli ornithine carbamoyltransferase isoenzymes: evolutionary significance and the isolation of λargF and λargI transducing bacteriophages. J Bacteriol 128:35–38

    PubMed  CAS  Google Scholar 

  • Maas W (1994) The arginine repressor of Escherichia coli. Microbiol Rev 58:631–640

    PubMed  CAS  Google Scholar 

  • Palmeros B, Wild J, Szybalski W, Le Borgne S, Hernández-Chávez G, Gosset G, Valle F, Bolivar F (2000) A family of removable cassettes designed to obtain antibiotic-resistant-free genomic modifications of Escherichia coli and other bacteria. Gene 247:255–264

    Article  PubMed  CAS  Google Scholar 

  • Panagiotidis CA, Blackburn S, Low KB, Canellakis ES (1987) Biosynthesis of polyamines in ornithine decarboxylase, arginine decarboxylase, and agmatine ureohydrolase deletion mutants of Escherichia coli strain K-12. Proc Natl Acad Sci USA 84:4423–4427

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal BS, DePonte J, Tuchman M, Malamy MH (1998) Use of inducible feedback-resistant N-acetylglutamate synthetase (argA) genes for enhanced arginine biosynthesis by genetically engineered Escherichia coli K-12 strains. 1998. Appl Environ Microbiol 64:1805–1811

    PubMed  CAS  Google Scholar 

  • Salvatore F, Cimino F, Maria C, Cittadini D (1964) Mechanism of the protection by l-ornithine-l-aspartate mixture and by l-arginine in ammonia intoxication. Arch Biochem Biophys 107:499–503

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Schneider BL, Kiupakis AK, Reitzer L (1998) Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J Bacteriol 180:4278–4286

    PubMed  CAS  Google Scholar 

  • Smith LT (1985) Characterization of a γ-glutamyl kinase from Escherichia coli that confers proline overproduction and osmotic tolerance. J Bacteriol 164:1088–1093

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Sangji University Research Fund 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Yong Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YJ., Cho, JY. Genetic manipulation of a primary metabolic pathway for l-ornithine production in Escherichia coli . Biotechnol Lett 28, 1849–1856 (2006). https://doi.org/10.1007/s10529-006-9163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9163-y

Keywords

Navigation