Skip to main content
Log in

The Effect of ArgR–DNA Binding Affinity on Ornithine Production in Corynebacterium glutamicum

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

pEMBTL-SY1, which can over produce the ArgR protein in Corynebacterium glutamicum, was constructed. The DNA-binding affinity of ArgR was analyzed using a Chromatin Immunoprecipitation (ChIP) assay. The level of ArgR protein expression in the plasmid-carrying C. glutamicum (pEMBTL-SY1) was higher than that in the wild-type strain. On the other hand, there was no increase in the DNA-binding affinity of ArgR on the upstream of argB and the level of ornithine production. The DNA-binding affinity of ArgR on the arg operon and the level of ornithine production in the presence of three metabolites, ornithine, arginine, and proline, were examined as feedback controlling effectors in the arginine biosynthesis pathway in C. glutamicum. The ChIP assay showed that the supplemented metabolites altered the ArgR-binding affinity on the upstream of argB, which is consistent with the change in ornithine production. This suggests that the regulation of ornithine biosynthesis by the transcriptional regulator, ArgR, depends on the DNA-binding affinity of the arg operon, which is regulated by the feedback controlling effectors, rather than on the level of ArgR protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Caldara M, Minh PNL, Bostoen S et al (2007) ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12. J Mol Biol 373:251–267

    Article  PubMed  CAS  Google Scholar 

  2. Caldra M, Charlier D, Cunin R (2006) The arginine regulon of Escherichia coli: whole-system transcriptome analysis discover new genes and provides an integrated view of arginine regulon. Microbiology 152:3343–3354

    Article  Google Scholar 

  3. Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199:91–95

    PubMed  CAS  Google Scholar 

  4. Cunin P, Glansdorff N, Piérard A et al (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352

    PubMed  CAS  Google Scholar 

  5. Dubois E, Messenguy F (1991) In vitro studies of the binding of the ARGR protein to the ARG5, 6 promoter. Mol Cell Biol 11:2162–2168

    PubMed  CAS  Google Scholar 

  6. Eikmanns BJ, Thus-Schmitz N, Eggeling L et al (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene coding citrate synthase. Microbiology 140:1817–1828

    Article  PubMed  CAS  Google Scholar 

  7. Fernández-Murga ML, Gil-Ortiz F, Llácer JL et al (2004) Arginine biosynthesis in Thermotoga maritima: characterization of the arginine-sensitive N-acetyl-l-glutamate kinase. J Bacteriol 186:6142–6149

    Article  PubMed  Google Scholar 

  8. Gallegos M-T, Schleif R, Bairoch A et al (1997) AraC/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61:393–410

    PubMed  CAS  Google Scholar 

  9. Grandori R, Lavoie TA, Pflumm M et al (1995) The DNA-binding domain of the hexameric arginine repressor. J Mol Biol 254:150–162

    Article  PubMed  CAS  Google Scholar 

  10. Graupner M, White RH (2001) Methanococcus jannaschii generates L-proline by cyclization of L-ornithine. J Bacteriol 183:5203–5205

    Article  PubMed  CAS  Google Scholar 

  11. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Bacteriol 104:155–172

    CAS  Google Scholar 

  12. Hwang J-H, Hwang G-H, Cho J-Y (2008) Effect of increased glutamate availability on l-ornithine production in Corynebacterium glutamicum. J Microbiol Biotechnol 18:704–710

    PubMed  CAS  Google Scholar 

  13. Kiupakis AK, Reitzer L (2002) ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184:2940–2950

    Article  PubMed  CAS  Google Scholar 

  14. Larsen R, Kok J, Kuipers OP (2005) Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis. J Biol Chem 280:19319–19330

    Article  PubMed  CAS  Google Scholar 

  15. Lee H-W, Yoon S-J, Jang H-W et al (2000) Effect of mixing on fed-batch fermentation of l-ornithine. J Biosci Bioeng 89:539–544

    Article  PubMed  CAS  Google Scholar 

  16. Lee Y-J, Cho J-Y (2006) Genetic manipulation of a primary metabolic pathway for l-ornithine production in Escherichia coli. Biotechnol Lett 28:1849–1856

    Article  PubMed  CAS  Google Scholar 

  17. Liebl W, Bayerl A, Schein B et al (1989) High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 65:299–304

    Article  CAS  Google Scholar 

  18. Lu C-D (2006) Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol 70:261–272

    Article  PubMed  CAS  Google Scholar 

  19. Lu C-D, Abdelal AT (1999) Role of ArgR in activation of the ast operon, encoding enzymes of the arginine succinyltransferase pathway in Salmonella typhimurium. J Bacteriol 181:1934–1938

    PubMed  CAS  Google Scholar 

  20. Maas WK (1994) The arginine repressor of Escherichia coli. Microbiol Rev 58:631–640

    PubMed  CAS  Google Scholar 

  21. Nishijyo T, Park S-M, Lu C-D et al (1998) Molecular characterization and regulation of an operon encoding a system for transport of arginine and ornithine and the ArgR regulatory protein in Pseudomonas aeruginosa. J Bacteriol 180:5559–5566

    PubMed  CAS  Google Scholar 

  22. Sakanyan V, Petrosyan P, Lecocq M et al (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology 142:99–108

    Article  PubMed  CAS  Google Scholar 

  23. Salvatore F, Cimino F, Maria C et al (1964) Mechanism of the protection by l-ornithine-l-aspartate mixture and by l-arginine in ammonia intoxication. Arch Biochem Biophys 107:499–503

    Article  PubMed  CAS  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, vol 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  25. Udaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79:754–755

    PubMed  CAS  Google Scholar 

  26. Xu Y, Sun Y, Huysveld N et al (2003) Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing. J Mol Biol 326:353–369

    Article  PubMed  CAS  Google Scholar 

  27. Xu Y, Labedan B, Glansdorff N (2007) Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiol Mol Biol Rev 71:36–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the 21C Frontier Microbial Genomics and Applications Center Program, Grant No. 11-2008-10-002-00, Ministry of Education, Science & Technology, Republic of Korea. Further support from a 2008 research grant from Chungbuk National University is appreciated. The authors are grateful for their supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang-Hoon Kim or Jiho Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.Y., Kim, YH. & Min, J. The Effect of ArgR–DNA Binding Affinity on Ornithine Production in Corynebacterium glutamicum . Curr Microbiol 59, 483–488 (2009). https://doi.org/10.1007/s00284-009-9467-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9467-y

Keywords

Navigation