Skip to main content
Log in

Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Kluyveromyces marxianus is thermotolerant yeast that is able to utilize a wider range of substrates and has greater thermal tolerance than most other yeast species. K. marxianus can assimilate xylose, but its ability to produce ethanol from xylose in oxygen-limited environments is poor. In the present study, the K. marxianus xylose reductase (KmXR) gene (Kmxyl1) was cloned and the recombinant enzyme was characterized to clarify the factors that limit xylose fermentation in K. marxianus NBRC1777. KmXR is a key enzyme in the xylose metabolism of K. marxianus, which was verified by disruption of the Kmxyl1 gene. The Km of the recombinant KmXR for NADPH is 65.67 μM and KmXR activity is 1.295 U/mg, which is lower than those of most reported yeast XRs, and the enzyme has no activity with coenzyme NADH. This result demonstrates that the XR from K. marxianus is highly coenzyme specific; combined with the extremely low XDH activity of K. marxianus with NADP+, the limitation of xylose fermentation is due to a redox imbalance under anaerobic conditions and low KmXR activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    PubMed  CAS  Google Scholar 

  2. Banat IM, Marchant R (1995) Characterization and potential industrial applications of 5 novel, thermotolerant, fermentative, yeast strains. World J Microbiol Biotechnol 11:304–306

    Article  Google Scholar 

  3. Banat IM, Nigam P, Singh D, Marchant R, McHale AP (1998) Ethanol production at elevated temperatures and alcohol concentrations: part I—yeasts in general. World J Microbiol Biotechnol 14:809–821

    Article  CAS  Google Scholar 

  4. Banat IM, Singh D, Marchant R (1996) The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production. Acta Biotechnologica 16:215–223

    Article  CAS  Google Scholar 

  5. Barron N, Mulholland H, Boyle M, McHale AP (1997) Ethanol production by Kluyveromyces marxianus IMB3 during growth on straw-supplemented whiskey distillery spent wash at 45 degrees C. Bioproc Eng 17:383–386

    CAS  Google Scholar 

  6. Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2:9

    Article  PubMed  Google Scholar 

  7. Bera AK, Ho NW, Khan A, Sedlak M (2011) A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol 38(5):617–626. doi:10.1007/s10295-010-0806-6

    Google Scholar 

  8. Boyle M, Barron N, McHale AP (1997) Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus IMB3. Biotechnol Lett 19:49–51

    Article  CAS  Google Scholar 

  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  10. Earley MC, Crouse GF (1996) Selectable cassettes for simplified construction of yeast gene disruption vectors. Gene 169:111–113

    Article  PubMed  CAS  Google Scholar 

  11. Fernandes S, Tuohy MG, Murray PG (2009) Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (Texr) and a double mutant (TexrK271R + N273D) with altered coenzyme specificity. J Biosci 34:881–890

    Article  PubMed  CAS  Google Scholar 

  12. Hacker B, Habenicht A, Kiess M, Mattes R (1999) Xylose utilisation: cloning and characterisation of the xylose reductase from Candida tenuis. Biol Chem 380:1395–1403

    Article  PubMed  CAS  Google Scholar 

  13. Hong J, Tamaki H, Akiba S, Yamamoto K, Kumagai H (2001) Cloning of a gene encoding a highly stable endo-beta-1, 4-glucanase from Aspergillus niger and its expression in yeast. J Biosci Bioeng 92:434–441

    Article  PubMed  CAS  Google Scholar 

  14. Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable beta-glucosidase gene from Thermoascus aurantiacus. App Microbiol Biotechnol 73:1331–1339

    Article  CAS  Google Scholar 

  15. Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123

    Article  PubMed  CAS  Google Scholar 

  16. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  PubMed  CAS  Google Scholar 

  17. Khoury GA, Fazelinia H, Chin JW, Pantazes RJ, Cirino PC, Maranas CD (2009) Computational design of Candida boidinii xylose reductase for altered cofactor specificity. Protein Sci 18:2125–2138

    Article  PubMed  CAS  Google Scholar 

  18. Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69:6179–6188

    Article  PubMed  CAS  Google Scholar 

  19. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  PubMed  CAS  Google Scholar 

  20. Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–650 652, 654 passim

    Article  PubMed  CAS  Google Scholar 

  21. Margaritis A, Bajpai P (1982) Direct fermentation of d-xylose to ethanol by Kluyveromyces marxianus strains. App Environ Microbiol 44:1039–1041

    CAS  Google Scholar 

  22. Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3–1042. Appl Environ Microbiol 74:7514–7521

    Article  PubMed  CAS  Google Scholar 

  23. Nonklang S, Ano A, Abdel-Banat BM, Saito Y, Hoshida H, Akada R (2009) Construction of flocculent Kluyveromyces marxianus strains suitable for high-temperature ethanol fermentation. Biosci Biotechnol Biochem 73:1090–1095

    Article  PubMed  CAS  Google Scholar 

  24. Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83

    Article  PubMed  CAS  Google Scholar 

  25. Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7:9

    PubMed  Google Scholar 

  26. Sampaio FC, de Faria JT, Coimbra JS, Lopes Passos FM, Converti A, Minin LA (2009) Xylose reductase activity in Debaryomyces hansenii UFV-170 cultivated in semi-synthetic medium and cotton husk hemicellulose hydrolyzate. Bioprocess Biosyst Eng 32:747–754

    Article  PubMed  CAS  Google Scholar 

  27. Sampaio FC, de Faria JT, Passos FM, Converti A, Minin LA (2009) Optimal activity and thermostability of xylose reductase from Debaryomyces hansenii UFV-170. J Ind Microbiol Biotechnol 36:293–300

    Article  PubMed  CAS  Google Scholar 

  28. Singh D, Nigam P, Banat IM, Marchant R, McHale AP (1998) Ethanol production at elevated temperatures and alcohol concentrations: Part II—use of Kluyveromyces marxianus IMB3. World J Microbiol Biotechnol 14:823–834

    Article  CAS  Google Scholar 

  29. Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306

    Article  PubMed  Google Scholar 

  30. Verduyn C, Van Kleef R, Frank J, Schreuder H, Van Dijken JP, Scheffers WA (1985) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226:669–677

    PubMed  CAS  Google Scholar 

  31. Wang XX, Fang BS, Luo JX, Li WJ, Zhang LY (2007) Heterologous expression, purification, and characterization of xylose reductase from Candida shehatae. Biotechnol Lett 29:1409–1412

    Article  PubMed  CAS  Google Scholar 

  32. Watanabe S, Pack SP, Saleh AA, Annaluru N, Kodaki T, Makino K (2007) The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci Biotechnol Biochem 71:1365–1369

    Article  PubMed  CAS  Google Scholar 

  33. Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+ -dependent xylitol dehydrogenase. J Biotechnol 130:316–319

    Article  PubMed  CAS  Google Scholar 

  34. Wilkins MR, Mueller M, Eichling S, Banat IM (2008) Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Proc Biochem 43:346–350

    Article  CAS  Google Scholar 

  35. Woodyer R, Simurdiak M, van der Donk WA, Zhao H (2005) Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl Environ Microbiol 71:1642–1647

    Article  PubMed  CAS  Google Scholar 

  36. Yokoyama SI, Suzuki T, Kawai K, Horitsu H, Takamizawa K (1995) Purification, characterization and structure-analysis of nadph-dependent d-xylose reductases from Candida-tropicalis. J Ferment Bioeng 79:217–223

    Article  CAS  Google Scholar 

  37. Zeng QK, Du HL, Wang JF, Wei DQ, Wang XN, Li YX, Lin Y (2009) Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis. Biotechnol Lett 31:1025–1029

    Article  PubMed  CAS  Google Scholar 

  38. Zhang F, Qiao D, Xu H, Liao C, Li S, Cao Y (2009) Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis. J Microbiol 47:351–357

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Tamaki Hisanori from Kagoshima University and Professor Kumagai Hidehiko from Ishikawa Prefectural University for providing the K. marxianus YHJ010 and plasmid YEGAP. This work was supported by a grant-in-aid from the National Natural Science Foundation of China (Grant no. 31070028) and the project was also sponsored by National Basic Research Program of China (Grant No. 2011CBA00801), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant no. 20093402120027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Zhang, L., Wang, D. et al. Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777. J Ind Microbiol Biotechnol 38, 2001–2010 (2011). https://doi.org/10.1007/s10295-011-0990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0990-z

Keywords

Navigation