Skip to main content
Log in

Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Soybean (Glycine max) roots establish associations with nodule-inducing rhizobia and arbuscular mycorrhizal (AM) fungi. Both rhizobia and AM fungi have been shown to affect the activity of and colonization by the other, and their interactions can be detected within host plants. Here, we report the transcription profiles of genes differentially expressed in soybean roots in the presence of rhizobial, AM, or rhizobial–AM dual symbiosis, compared with those in control (uninoculated) roots. Following inoculation, soybean plants were grown in a glasshouse for 6 weeks; thereafter their root transcriptomes were analyzed using an oligo DNA microarray. Among the four treatments, the root nodule number and host plant growth were highest in plants with dual symbiosis. We observed that the expression of 187, 441, and 548 host genes was up-regulated and 119, 1,439, and 1,298 host genes were down-regulated during rhizobial, AM, and dual symbiosis, respectively. The expression of 34 host genes was up-regulated in each of the three symbioses. These 34 genes encoded several membrane transporters, type 1 metallothionein, and transcription factors in the MYB and bHLH families. We identified 56 host genes that were specifically up-regulated during dual symbiosis. These genes encoded several nodulin proteins, phenylpropanoid metabolism-related proteins, and carbonic anhydrase. The nodulin genes up-regulated by the AM fungal colonization probably led to the observed increases in root nodule number and host plant growth. Some other nodulin genes were down-regulated specifically during AM symbiosis. Based on the results above, we suggest that the contribution of AM fungal colonization is crucial to biological N2-fixation and host growth in soybean with rhizobial-AM dual symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antunes PM, Rajcan I, Goss MJ (2006a) Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max (L.) Merr.). Soil Biol Biochem 38:533–543

    Article  CAS  Google Scholar 

  • Antunes PM, de Varennes A, Rajcan I, Goss MJ (2006b) Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biol Biochem 38:1234–1242

    Article  CAS  Google Scholar 

  • Antunes PM, de Varennes A, Zhang T, Goss MJ (2006c) The tripartite symbiosis formed by indigenous arbuscular mycorrhizal fungi, Bradyrhizobium japonicum and soya bean under field conditions. J Agron Crop Sci 192:373–378

    Article  Google Scholar 

  • Appleby CA (1984) Leghaemoglobin and Rhizobium respiration. Annu Rev Plant Physiol 35:443–478

    Article  CAS  Google Scholar 

  • Asai T (1944) Über die Mykorrhizenbildung der leguminosen Pflanzen. Jpn J Bot 13:463–485

    Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, Tabata S (2005) Comparison of the transcript profiles from the root and the nodulating root of the model legume Lotus japonicus by serial analysis of gene expression. Mol Plant Microbe Interact 18:487–498

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Balestrini R, Lanfranco L (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16:509–524

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Azcón-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. Adv Agron 36:1–54

    Article  Google Scholar 

  • Becana M, Dalton DA, Morau JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Blilou I, Ocampo JA, García-Garrido JM (1999) Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid. J Exp Bot 50:1663–1668

    Article  CAS  Google Scholar 

  • Bonneau L, Huguet S, Wipf D, Pauly N, Truong H-N (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. N Phytol 199:188–202

    Article  CAS  Google Scholar 

  • Boscari A, del Giudice J, Ferrarini A, Venturini L, Zaffini A-L, Delledonne M, Puppo A (2013) Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: Which role for nitric oxide? Plant Physiol 161:425–439

    Article  CAS  PubMed  Google Scholar 

  • Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatulaGlomus mosseae interactions. Mycorrhiza 14:253–262

    Article  CAS  PubMed  Google Scholar 

  • Brechenmacher L, Kim MY, Benitez M, Li M, Joshi T, Calla B et al (2008) Transcription profiling of soybean nodulation by Bradyrhizobium japonicum. Mol Plant Microbe Interact 21:631–645

    Article  CAS  PubMed  Google Scholar 

  • Bressano M, Curetti M, Giachero L, Gil SV, Cabello M, March G et al (2010) Mycorrhizal fungi symbiosis as a strategy against oxidative stress in soybean plants. J Plant Physiol 167:1622–1626

    Article  CAS  PubMed  Google Scholar 

  • Cabeza RA, Liese R, Lingner A, von Stieglitz I, Neumann J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J (2014) RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N2 fixation before emerging P deficiency reaches the nodules. J Exp Bot 65:6035–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carling DE, Riehle WG, Brown MF, Johnson DR (1978) Effect of a vesicular-arbuscular mycorrhizal fungus on nitrate reductase and nitrogenase activities in nodulating and non-nodulating soybeans. Phytopathol 68:1590–1596

    Article  CAS  Google Scholar 

  • Cassab GI (1998) Plant cell wall protein. Annu Rev Plant Physiol Plant Mol Biol 49:281–309

    Article  CAS  PubMed  Google Scholar 

  • Chalk PM, de Souza RF, Urquiqga S, Alves BJR, Boddy RM (2006) The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biol Biochem 38:2944–2951

    Article  CAS  Google Scholar 

  • Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheon CI, Hong Z, Verma DPS (1994) Nodulin-24 follows novel pathway for integration into the peribacteroid membrane in soybean root nodules. J Biol Chem 269:6598–6602

    CAS  PubMed  Google Scholar 

  • Colebatch G, Kloska S, Trevaskis B, Freund S, Altmann T, Udvardi MK (2002) Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Mol Plant Microbe Interact 15:411–420

    Article  CAS  PubMed  Google Scholar 

  • Damiani I, Drain A, Guichard M, Balzergue S, Boscari A, Boyer J-C et al (2016) Nod factor effects on root hair-specific transcriptome of Medicago truncatula: Focus on plasma membrane transport systems and reactive oxygen species networks. Front Plant Sci 7:794

    PubMed  PubMed Central  Google Scholar 

  • Daviére JM, de Lucas M, Prat S (2008) Transcriptional factor interaction: a central step in DELLA function. Curr Opin Genet Dev 18:295–303

    Article  PubMed  CAS  Google Scholar 

  • de la Pena TC, Frugier F, McKhann HI, Bauer P, Brown S, Kondorosi A et al (1997) A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development. Plant J 11:407–420

    Article  Google Scholar 

  • de Lucas M, Daviére JM, Rodriguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S et al (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484

    Article  PubMed  CAS  Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320

    Article  CAS  PubMed  Google Scholar 

  • Deguchi Y, Banba M, Shimoda Y, Chechetka SA, Suzuri R, Okusako Y et al (2007) Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation. DNA Res 14:117–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Yahyaoui F, Küster H, Amor BB, Hohnjec N, Pühler A, Becker A et al (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds PN (2009) Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol 12:399–405

    Article  CAS  PubMed  Google Scholar 

  • Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ, Braun DM, Frommer WB (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F et al (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379

    Article  CAS  PubMed  Google Scholar 

  • Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ (2013) DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 110:E5025–E5034

    Article  CAS  PubMed  Google Scholar 

  • Floss DS, Gomez SK, Park HJ, MacLean AM, Müller LM, Bhattarai KK, Levesque-Tremblay V, Maldonado-Mendoza IE, Harrison MJ (2017) A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1. Curr Biol 27:1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Fortin MG, Morrison NA, Verma DPS (1987) Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res 15:813–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franken P, Donges K, Grunwald U, Kost G, Rexer KH, Tamasloukht M et al (2007) Gene expression analysis of arbuscule development and functioning. Phytochemistry 68:68–74

    Article  CAS  PubMed  Google Scholar 

  • Gamas P, Niebel FC, Lescure N, Cullimore JV (1996) Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microbe Interact 9:233–242

    Article  CAS  PubMed  Google Scholar 

  • Gaude N, Bortfeid S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianinazzi-Pearson V, Brechenmacher L (2004) Functional genomics of arbuscular mycorrhiza: decoding the symbiotic cell programme. Can J Bot 82:1228–1234

    Article  CAS  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB et al (2009) Medicago truncatura and Glomus intraradices gene expression in cortical cells harboring arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goss MJ, de Varennes A (2002) Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biol Biochem 34:1167–1173

    Article  CAS  Google Scholar 

  • Grunwald U, Nyamsuren O, Tamasloukht M, Lapopin L, Becker A, Mann P et al (2004) Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Biol 55:553–566

    Article  CAS  PubMed  Google Scholar 

  • Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. N Phytol 182:200–212

    Article  CAS  Google Scholar 

  • Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C et al (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070

    Article  PubMed  CAS  Google Scholar 

  • Günther C, Schlereth A, Udvardi M, Ott T (2007) Metabolism of reactive oxygen species is attenuated in leghemoglobin-deficient nodules of Lotus japonicus. Mol Plant Microbe Interact 20:1596–1603

    Article  PubMed  CAS  Google Scholar 

  • Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K (2015) RNA-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant Cell Physiol 56:1490–1511

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant Microbe Interact 6:643–654

    Article  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    Article  CAS  PubMed  Google Scholar 

  • Hause G, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S, Reid DE, Lorenc MT, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ (2012) Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots. Plant Biotechnol J 10:995–1010

    Article  CAS  PubMed  Google Scholar 

  • Hayman DS (1986) Mycorrhizae of nitrogen-fixing legumes (review). MIRCEN J 2:121–145

    Article  Google Scholar 

  • Hildebrandt U, Schmelzer E, Bothe H (2002) Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus. Physiol Plant 115:125–136

    Article  CAS  PubMed  Google Scholar 

  • Hogekamp C, Küster H (2013) A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis. BMC Genom 14:306

    Article  CAS  Google Scholar 

  • Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H (2011) Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157:2023–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isoi T (1997) Comparison of arbuscular mycorrhizal fungal flora under different cropping systems in a light-colored Andosol of Japan. Soil Microorg 50:61–64

    Google Scholar 

  • Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D et al (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ et al (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res 30:5579–5592

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaewsuralikhit S, Yokoyama T, Kouchi H, Arima Y (2005) Comprehensive analysis of plant gene expression in soybean root nodules at different growth stages. Soil Sci Plant Nutr 51:535–547

    Article  CAS  Google Scholar 

  • Kamoun S (2007) Groovy time: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10:358–365

    Article  CAS  PubMed  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbiosis? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Kaschuk G, Leffelaar PA, Giller KE, Alberton O, Hungria M, Kuyper TW (2010) Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbioses. Soil Biol Biochem 42:125–127

    Article  CAS  Google Scholar 

  • Kawai Y, Yamamoto Y (1986) Increase in the formation and nitrogen fixation of soybean nodules by vesicular-arbuscular mycorrhiza. Plant Cell Physiol 27:399–405

    CAS  Google Scholar 

  • Kawashima I, Inokuchi Y, Chino M, Kimura M, Shimizu N (1991) Isolation of a gene for a metallothionein-like protein from soybean. Plant Cell Physiol 32:913–916

    CAS  Google Scholar 

  • Kelly S, Mun T, Stougaard J, Ben C, Andersen SU (2018) Distinct Lotus japonicus transcriptomic responses to a spectrum of bacteria ranging from symbiotic to pathogenic. Front Plant Sci 9:1218

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalil S, Loynachan TE, McNabb HS Jr (1992) Colonization of soybean by mycorrhizal fungi and spore populations in Iowa soils. Agron J 84:832–836

    Article  Google Scholar 

  • Khan MK, Sakamoto K, Yoshida T (1995) Dual inoculation of peanut with Glomus sp. and Bradyrhizobium sp. enhanced the symbiotic nitrogen fixation as assessed by 15N-technique. Soil Sci Plant Nutr 41:769–779

    Article  CAS  Google Scholar 

  • Kistner C, Winzer T, Pitzschke A (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Maeda T, Yamaguchi K, Kameoka H, Tanaka S, Ezawa T, Shigenobu S, Kawaguchi M (2018) The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genom 19:465

    Article  CAS  Google Scholar 

  • Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 238:106–119

    Article  CAS  PubMed  Google Scholar 

  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H et al (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:263–274

    Article  CAS  PubMed  Google Scholar 

  • Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y et al (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51:1381–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krajinski F, Frenzel A (2007) Towards the elucidation of AM-specific transcription in Medicago trancatura. Phytochemistry 68:75–81

    Article  CAS  PubMed  Google Scholar 

  • Küster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J et al (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbiosis in the model legume Medicago truncatula. J Biotechnol 108:95–113

    Article  PubMed  CAS  Google Scholar 

  • Küster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochemistry 68:8–18

    Article  PubMed  CAS  Google Scholar 

  • Lambais MR, Ríos-Ruiz WF, Andrade RM (2003) Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. N Phytol 160:421–428

    Article  CAS  Google Scholar 

  • Larimer AL, Bever JD, Clay K (2010) The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51:139–148

    Article  Google Scholar 

  • Lee H, Hur CG, Oh CJ, Kim HB, Park SY, An CS (2004) Analysis of the root nodule-enhanced transcriptome in soybean. Mol Cells 18:53–62

    PubMed  Google Scholar 

  • Li C, Gui S, Yang T, Walk T, Wang X, Liao H (2012) Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Ann Bot 109:275–285

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA et al (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Blaylock LA, Harrison MJ (2004) cDNA arrays as a tool to identify mycorrhiza-regulated genes: identification of mycorrhiza-induced genes that encode or generate signaling molecules implicated in the control of root growth. Can J Bot 82:1177–1185

    Article  CAS  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li Y, Wang W, Gai J, Li Y (2016) Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genom 17:223

    Article  CAS  Google Scholar 

  • Luginbuehl LH, Menard GN, Kurup S, van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178

    Article  CAS  PubMed  Google Scholar 

  • Lv Y, Deng X, Quan L, Xia Y, Shen Z (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367:507–519

    Article  CAS  Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagés V, Haouy A, Gueunier M et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  CAS  PubMed  Google Scholar 

  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM et al (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbiosis. Mol Plant Microbe Interact 17:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Massoumou M, van Tuinen D, Chatagnier O, Arnould C, Brechenmacher L, Sanchez L et al (2007) Medicago truncatura gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota. Mycorrhiza 17:223–234

    Article  CAS  PubMed  Google Scholar 

  • Miao GH, Verma DPS (1993) Soybean nodulin-26 gene encoding a channel protein is expressed only in the infected cells of nodules and is regulated differently in roots of homologous and heterologous plants. Plant Cell 5:781–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mir G, Domènech J, Huguet G, Guo WJ, Goldsbrough P, Atrian S et al (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55:2483–2493

    Article  CAS  PubMed  Google Scholar 

  • Mohammad A, Miranda-Ríos J, Estrada Navarrete G, Quinto C, Olivares JE, García-Ponce B, Sánchez F (2004) Nodulin 22 from Phaseolus vulgaris protects Escherichia coli cells from oxidative stress. Planta 219:993–1002

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi-Dehcheshmeh M, Niazi A, Ebrahimi M, Tahsili M, Nurollah Z, Khaksefid RE et al (2018) Unified transcriptomic signature of arbuscular mycorrhiza colonization in roots of Medicago truncatula by integration of machine learning, promoter analysis, and direct merging meta-Analysis. Front Plant Sci 9:1550

    Article  PubMed  PubMed Central  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Morandi D, Bailey JA, Gianinazzi-Pearson V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24:357–364

    Article  CAS  Google Scholar 

  • Okazaki S, Kaneko T, Sato S, Saeki K (2013) Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci USA 110:17131–17136

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signaling. Curr Opin Plant Biol 9:351–357

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. N Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Provorov NA, Borisov AY, Tikhonovich IA (2002) Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza. J Theor Biol 214:215–232

    Article  CAS  PubMed  Google Scholar 

  • Rajapakse S, Miller JC (1994) Methods for studying vesicular-arbuscular mycorrhizal root colonization and related root physical properties. In: Norris JR, Read D, Varma AK (eds) Techniques for mycorrhizal research. Academic, London, pp 761–776

    Google Scholar 

  • Rathbun EA, Naldrett MJ, Brewin NJ (2002) Identification of a family of extensin-like glycoproteins in the lumen of rhizobium-induced infection threads in pea root nodules. Mol Plant Microbe Interact 15:350–359

    Article  CAS  PubMed  Google Scholar 

  • Rech SS, Heidt S, Requena N (2013) A tandem Kunitz protease inhibitor (KPI106)–serine carboxypeptidase (SCP1) controls mycorrhiza establishment and arbuscule development in Medicago truncatula. Plant J 75:711–725

    Article  CAS  PubMed  Google Scholar 

  • Rivers RL, Dean RM, Chandyi G, Halli JE, Roberts DM, Zeidel ML (1997) Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem 272:16256–16261

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-López J, Martínez-Centeno C, Padmanaban A, Guillén G, Olivares JE, Stefano G, Lledías F, Ramos F, Ghabrial SA, Brandizzi F, Rocha-Sosa M, Díaz-Camino C, Sanchez F (2014) Nodulin 22, a novel small heat-shock protein of the endoplasmic reticulum, is linked to the unfolded protein response in common bean. Mol Plant Microbe Interact 27:18–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP et al (2004) Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Mol Plant Microbe Interact 17:1294–1305

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Nohara Y (2009) Soybean (Glycine max [L.] Merr.) shoots systemically control arbuscule formation in mycorrhizal symbiosis. Soil Sci Plant Nutr 55:252–257

    Article  Google Scholar 

  • Sakamoto K, Ogiwara N, Kaji T (2013) Involvement of autoregulation in the interaction between rhizobial nodulation and AM fungal colonization in soybean roots. Biol Fertil Soils 49:1141–1152

    Article  Google Scholar 

  • Salzer P, Corbiére H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325

    Article  CAS  Google Scholar 

  • Sanchez L, Weidmann S, Brechenmacher L, Batoux M, van Tuinen D, Lemanceau P et al (2004) Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. N Phytol 161:855–863

    Article  CAS  Google Scholar 

  • Sandal NN, Bojsen K, Richter H, Sengupta-Gopalan C, Marcker KA (1992) The nodulin 24 protein family shows similarity to a family of glycine-rich plant proteins. Plant Mol Biol 18:607–610

    Article  CAS  PubMed  Google Scholar 

  • Schaarschmidt S, Gresshoff PM, Hause B (2013) Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization. Genome Biol 14:R62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schenck NC, Kinloch RA (1980) Incidence of mycorrhizal fungi on six field crops in monoculture on a newly cleared woodland site. Mycologia 72:445–456

    Article  Google Scholar 

  • Shimada N, Akashi T, Aoki T, Ayabe S (2000) Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci 160:37–47

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Solaiman MZ, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. N Phytol 136:533–538

    Article  CAS  Google Scholar 

  • Steffens B, Sauter M (2009) Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21:184–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stougaard J (2001) Genetic and genomics of root symbiosis. Curr Opin Plant Biol 4:328–335

    Article  CAS  PubMed  Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. N Phytol 172:22–34

    Article  CAS  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979

    Article  CAS  PubMed  Google Scholar 

  • Suganuma N, Yamamoto A, Itou A, Hakoyama T, Banba M, Hata S et al (2004) cDNA macroarray analysis of gene expression in ineffective nodules induced on the Lotus japonicus sen1 mutant. Mol Plant Microbe Interact 17:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Sugimura Y, Saito K (2017) Comparative transcriptome analysis between Solanum lycopersicum L. and Lotus japonicus L. during arbuscular mycorrhizal development. Soil Sci Plant Nutr 63:127–136

    Article  CAS  Google Scholar 

  • Sugiyama A, Yamazaki Y, Yamashita K, Takahashi S, Nakayama T, Yazaki K (2016) Developmental and nutritional regulation of isoflavone secretion from soybean roots. Biosci Biotechnol Biochem 80:89–94

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama A, Saida Y, Yoshimizu M, Takanashi K, Sosso D, Frommer WB, Yazaki K (2017) Molecular characterization of LjSWEET3, a sugar transporter in nodules of Lotus japonicus. Plant Cell Physiol 58:298–306

    CAS  PubMed  Google Scholar 

  • Szczyglowski K, Amyot L (2003) Symbiosis, inventiveness by recruitment? Plant Physiol 131:935–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takanashi K, Takahashi H, Sakurai N, Sugiyama A, Suzuki H, Shibata D, Nakazono M, Yazaki K (2012) Tissue-specific transcriptome analysis in nodules of Lotus japonicus. Mol Plant Microbe Interact 25:869–876

    Article  CAS  PubMed  Google Scholar 

  • Takanashi K, Yokosho K, Saeki K, Sugiyama A, Sato S, Tabata S, Ma JF, Yazaki K (2013) LjMATE1: a citrate transporter responsible for iron supply to the nodule infection zone of Lotus japonicus. Plant Cell Physiol 54:585–594

    Article  CAS  PubMed  Google Scholar 

  • Takeda N, Kistner C, Kosuta S, Winzer T, Pitzschke A, Groth M et al (2007) Proteases in plant root symbiosis. Phytochemistry 68:111–121

    Article  CAS  PubMed  Google Scholar 

  • Thiagarajan TR, Ahmad MH (1993) Influence of a vesicular-arbuscular mycorrhizal fungus on the competitive ability of Bradyrhizobium spp. for nodulation of cowpea Vigna unguiculata (L.) Walp in non-sterilized soil. Biol Fertil Soils 15:294–296

    Article  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM197198) reveals functional tradeoffs in an obligate symbiont. N Phytol 193:755–769

    Article  CAS  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA 110:20117–20122

    Article  CAS  PubMed  Google Scholar 

  • Trevaskis B, Wandrey M, Colebatch G, Udvardi MK (2002) The soybean GmN6L gene encodes a late nodulin expressed in the infected zone of nitrogen-fixing nodules. Mol Plant Microbe Interact 15:630–636

    Article  CAS  PubMed  Google Scholar 

  • Tromas A, Parizot B, Diagne N, Champion A, Hocher V, Cissoko M et al (2012) Heart of endosymbiosis: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. PLoS One 7:e44742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d`un systéme radiculaire, Recherche de méthodes d`estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA Press, Paris, pp 217–221

    Google Scholar 

  • Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Sakurai T, Totoki Y, Toyoda A, Seki M, Ishiwata A et al (2008) Sequencing and analysis of approximately 40000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Res 15:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vejsadová H, Siblíková D, Hršelová H, Vančura V (1992) Effect of the VAM fungus Glomus sp. on the growth and yield of soybean inoculated with Bradyrhizobium japonicum. Plant Soil 140:121–125

    Article  Google Scholar 

  • Vincill ED, Szczyglowski K, Roberts DM (2005) GmN70 and LjN70. Anion transporters of the symbiosome membrane of nodules with a transport preference for nitrate. Plant Physiol 137:1435–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpe V, Dell’Aglio E, Giovannetti M, Ruberti C, Costa A, Genre A, Guether M, Bonfante P (2013) An AM-induced, MYB-family gene of Lotus japonicus (LjMAMI) affects root growth in an AM-independent manner. Plant J 73:442–455

    Article  CAS  PubMed  Google Scholar 

  • Walter MH, Floß DS, Hans J, Fester T, Strack D (2007) Apocarotenoid biosynthesis in arbuscular mycorrhizal roots: contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation. Phytochemistry 68:130–138

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  CAS  Google Scholar 

  • Wewer V, Brands M, Dormann P (2014) Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant J 79:398–412

    Article  CAS  PubMed  Google Scholar 

  • Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T et al (2003) Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact 16:306–314

    Article  CAS  PubMed  Google Scholar 

  • Wyss P, Mellor RB, Wiemken A (1990) Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins. Planta 182:22–26

    Article  CAS  PubMed  Google Scholar 

  • Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Zhuang Q, Zhu S, Xiao B, Liang C, Liao H, Tian J (2018) Genome wide transcriptome analysis reveals complex regulatory mechanisms underlying phosphate homeostasis in soybean nodules. Int J Mol Sci 19:2924

    Article  PubMed Central  CAS  Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229

    Article  CAS  PubMed  Google Scholar 

  • Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Li R, Chen S, Chen H, Zhang C, Chen L, Hao Q et al (2016) RNA-seq analysis of differential gene expression responding to different rhizobium strains in soybean (Glycine max) roots. Front Plant Sci 7:721

    PubMed  PubMed Central  Google Scholar 

  • Yuan S, Li R, Chen H, Zhang C, Chen L, Hao Q et al (2017) RNA-Seq analysis of nodule development at five different developmental stages of soybean (Glycine max) inoculated with Bradyrhizobium japonicum strain 113-2. Sci Rep 7:42248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K et al (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Zhao DX, Miao Q, Xue TT, Li XZ, Zheng CC (2009) Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress. J Plant Biol 52:585–592

    Article  CAS  Google Scholar 

  • Zhu M, Dahmen JL, Stacey G, Cheng J (2013) Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data. BMC Bioinform 14:278

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ryo Yamamoto (National Agriculture and Food Research Organization, Japan) for providing soybean seeds, and Dr. Taishi Umezawa (Tokyo University of Agriculture and Technology, Japan) for technical assistance.

Funding

This work was supported by Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Number 23380042) to KS; the Japan Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST) and Grants from RIKEN to MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Sakamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, K., Ogiwara, N., Kaji, T. et al. Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. J Plant Res 132, 541–568 (2019). https://doi.org/10.1007/s10265-019-01117-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-019-01117-7

Keywords

Navigation