Skip to main content
Log in

Nodulin 22 from Phaseolus vulgaris protects Escherichia coli cells from oxidative stress

  • Original Paper
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant genes that are induced during the formation and function of a root nodule are called nodulin genes. Cloning and functional analysis of nodule-specific gene products are of valuable help in establishing the role and requirements of the host plant for the specificity and effectiveness of the symbiosis. A cDNA clone (nod22) was isolated from Phaseolus vulgaris L. (common bean) cDNA library derived from Rhizobium -infected roots. Nodulin 22 (Nod22) transcripts are accumulated from early to late stages in root nodule development. RT-PCR in situ studies indicated that Nod22 transcripts are highly accumulated in cortical, vascular bundle and infected cells. The deduced Nod22 protein contains a highly hydrophobic N-terminus, with signal peptide characteristics, and a C-terminal extension with high identity to the α-crystallin domains found in α-crystallin lens chaperone, and other small heat-shock proteins. These domains have not been previously described in other known nodulins, but have been observed in small heat-shock proteins found in plant tissues exposed to elevated temperature and oxidative stress. Nod22, when it is over-expressed in Escherichia coli, cells confers protection against oxidative stress suggesting its possible role in plant host protection from oxidative toxicity during the Rhizobium-legume symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4a, b
Fig. 5a, b
Fig. 6a–d

Similar content being viewed by others

Abbreviations

ACD :

α-Crystallin domain

CLSM :

Confocal laser scanning microscopy

sHsp :

Small heat-shock protein

SP :

Signal peptide

References

  • Andley UP, Harendra C Patel, Jing-Hua Xi (2002) The R116C mutation in αA-crystallin diminishes its protective ability against stress-induced Lens epithelial cell apoptosis. J Biol Chem 277:10178–10186

    Article  CAS  PubMed  Google Scholar 

  • Becana M, Poaris FJ, Sandalio LM, Del Río LA (1989) Isoenzymes of superoxide dismutase in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna ungiculata (L). Plant Physiol 90:1286–1292

    CAS  Google Scholar 

  • Capote N, Sánchez F (1997) Characterization of common bean uricase II and its expression in organs other than nodules. Plant Physiol 115:1307–1317

    Article  PubMed  Google Scholar 

  • Cook D, Dreyer D, Bonnet D, Howell M, Nony E, Vandenbosch K (1995) Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell 7:43–55

    CAS  PubMed  Google Scholar 

  • Dantan E, Rosenstein Y, Quinto C, Sánchez F (2001) Actin monoubiquitylation is induced in plants in response to pathogens and symbionts. MPMI 14:1267–1273

    PubMed  Google Scholar 

  • Derham BK, Ellory JC, Bron AJ, Harding JJ (2003) The molecular chaperone α-crystallin incorporated into red cell ghosts protects membrane Na/K-ATPase against glycation and oxidative stress. Eur J Biochem 270:2605–2611

    Article  CAS  PubMed  Google Scholar 

  • Echey-Kaltenbach H, Keifer E, Grosskog E, Ernst D, Sandermann H Jr (1997) Differential transcript induction of parsley pathogenesis-related proteins and and a small heat-shock protein by ozone and heat shock. Plant Mol Biol 33:343–350

    Article  PubMed  Google Scholar 

  • Foreman J, Demidchick V, Bothwell JHF, Mylona P, Maidema H, Torres MA, Linstead P, Costa S, Browlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Guillén G, Valdés-López V, Noguez R, Olivares J, Rodríguez-Zapata LC, Pérez H, Vidali L, Villanueva MA, Sánchez F (1999) Profilin in Phaseolus vulgaris is encoded by two genes (only one expressed in root nodules) but multiple isoforms are generated in vivo by phosphorylation on tyrosine residues. Plant J 19:497–508

    Article  PubMed  Google Scholar 

  • Huckelhoven R, Kogel K-H (2003) Reactive oxygen intermediates in plant-microbe interactions: who is who in powdery mildew resistance. Planta 216:891–902

    CAS  PubMed  Google Scholar 

  • Iturbe-Ormaetxe I, Matamoros MA, Ubio MC, Dalton DA, Becana M (2001) The andioxidants of legume nodule mitochondira. MPMI 14:1189–1196

    CAS  PubMed  Google Scholar 

  • Joe MK, Park SM, Lee YS, Hwang DS, Hong CB (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol Cells 10:519–524

    Article  CAS  PubMed  Google Scholar 

  • Jofré A, Molinas M, Pla M (2003) A 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress. Planta 217:813–819

    Article  PubMed  Google Scholar 

  • Jong WW de, Caspers GJ, Leunissen JA (1998) Geneology of the α-crystallin small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    PubMed  Google Scholar 

  • Kelley LA, MacCallum RM, Sternberg MJE (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:501–522

    Article  Google Scholar 

  • Kyte J, Doollittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1989) Molecular cloning: laboratory manual. Cold Spring Harbour Press, N.Y.

    Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    PubMed  Google Scholar 

  • Montfort RL van, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat-shock protein. Nat Struct Biol 8:1025–1030

    PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    CAS  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Dev Cell Biol 126:4405–4419

    CAS  Google Scholar 

  • Sabatini DD, Kreibich G, Morimoto T, Adesnik M (1982) Mechanisms for the incorporation of proteins in membranes and organelles. J Cell Biol 92:1–22

    Article  CAS  PubMed  Google Scholar 

  • Sánchez F, Padilla JE, Pérez H, Lara M (1991) Control of nodulin genes in root-nodule development and metabolism. Annu Rev Plant Physiol Plant Mol Biol 42:507–528

    Article  Google Scholar 

  • Santos R, Herouart D, Puppo A, Touati D (2000) Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis. Mol Microbiol 38:750–759

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    CAS  PubMed  Google Scholar 

  • Shaw SL, Long SR (2003) Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiol 132:2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Soto A, Allona I, Collada C, Guevara M, Casado R, Rodriguez-Cerezo E, Arangocillo C, Gómez L (1999) Heterologous expresión of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 120:521–528

    CAS  PubMed  Google Scholar 

  • Stougaard J (2000) Regulators and regulations of legume root nodule development. Plant Physiol 124:531–540

    PubMed  Google Scholar 

  • Stromer T, Ehrnsperger M, Gaestel M, Buchner J (2003) Analysis of the interaction of small heat-shock proteins with unfolding proteins. J Biol Chem 278:18015–18021

    Article  CAS  PubMed  Google Scholar 

  • Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95

    CAS  PubMed  Google Scholar 

  • Wang K, Spector A (1996) A alpha-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. Eur J Biochem 242:56–66

    CAS  PubMed  Google Scholar 

  • Waters ER (1995) Molecular evolution of the small heat-shock proteins in plants. Genetics 141:785–795

    CAS  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structures and function of the small heat-shock proteins in plants. J Exp Bot 47:325–338

    CAS  Google Scholar 

  • Whitham SA, Anderberg RJ, Chrisholm ST, Carrington JC (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an usual small heat-shock-like protein. Plant Cell 12:569–582

    CAS  PubMed  Google Scholar 

  • Worley KC, Wiese BA, Smith RF (1995) BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results. Genome Res 5:173–84

    CAS  PubMed  Google Scholar 

  • Yeh KW, Jinn TL, Yeh CH, Chen YM, Lin CY (1994) Plant low-molecular-mass heat-shock proteins: their relationships to the acquisition of thermotolerance in plants. Biotechnol Appl Biochem 19:41–49

    Google Scholar 

  • Yeh CH, Chen YM, Lin CY (2002) Functional regions of rice heat-shock protein Oshp16.9, required for conferring thermotolerance in Escherichia coli. Plant Physiol 128:661–668

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang L, Fong F, Gao J, Galbraith DW; Song CP (2001) Hydrogen peroxide is envolved in abscisic acid stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Assistance by Noreide Nava and Gabriel Guillén is appreciated. We gratefully acknowledge Xóchitl Alvarado for the confocal laser scanning microscopy, and Nayeli Sánchez for processing the images in Adobe Photoshop. Dr Otto Gieger’s critical review of the manuscript is appreciated. This research was funded by projects DGAPA (IN232002), and CONACYT (33350-N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammad, A., Miranda-Ríos, J., Estrada Navarrete, G. et al. Nodulin 22 from Phaseolus vulgaris protects Escherichia coli cells from oxidative stress. Planta 219, 993–1002 (2004). https://doi.org/10.1007/s00425-004-1303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1303-9

Keywords

Navigation