Skip to main content
Log in

The interactive effects of plant microbial symbionts: a review and meta-analysis

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

In nature, plants often associate with multiple symbionts concurrently, yet the effects of tripartite symbioses are not well understood. We expected synergistic growth responses from plants associating with functionally distinct symbionts. In contrast, symbionts providing similar benefits to a host may reduce host plant growth. We reviewed studies investigating the effect of multiple interactions on host plant performance. Additionally, we conducted a meta-analysis on the studies that performed controlled manipulations of the presence of two microbial symbionts. Using response ratios, we investigated the effects on plants of pairs of symbionts (mycorrhizal fungi, fungal endophytes, and nitrogen-fixers). The results did not support the view that arbuscular mycorrhizal (AM) fungi and rhizobia should interact synergistically. In contrast, we found the joint effects of fungal endophytes and arbuscular mycorrhizal fungi to be greater than expected given their independent effects. This increase in plant performance only held for antagonistic endophytes, whose negative effects were alleviated when in association with AM fungi, while the impact of beneficial endophytes was not altered by infection with AM fungi. Generalizations from the meta-analysis were limited by the substantial variation within types of interactions and the data available, highlighting the need for more research on a range of plant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahlholm JU, Helander M, Lehtimaki S, Wali P, Saikkonen K (2002) Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99:173–183

    Article  Google Scholar 

  • Ames RN, Bethlenfalvay GJ (1987) Localized increase in nodulue activity but no competitive interaction of cowpea rhizobia due to pre-establishment of vesicular arbuscular mycorrhiza. New Phytol 106:207–215

    Article  Google Scholar 

  • Barea JM, Werner D, Azcon-Guilar C, Azcon R (2005) Interactions of arbuscular mycorrhiza and nitrogen-fixing symbiosis in sustainable agriculture. Nitrogen Fixation Agric Forest Ecol Environ Nitrogen Fixation Orig Applications Research Progress 4:199–222

    Article  Google Scholar 

  • Barker GM (1987) Mycorrhizal infection influences Acremonium-induced resistance to Argentine stem weevil in grasses. Proc NZ Weed Pest Control Conf 40:199–203

    Google Scholar 

  • Bennett AE, Alers-Garcia J, Bever JD (2006) Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. Am Nat 167:141–152

    Article  PubMed  Google Scholar 

  • Bethlenfalvay GJ, Pacovsky RS, Bayne HG, Stafford AE (1982) Interactions between nitrogen-fixation, mycorrhizal colonization, and host plant growth in the Phaseolus-Rhizobium-Glomus symbiosis. Plant Physiol 70:446–450

    Article  CAS  PubMed  Google Scholar 

  • Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573

    Article  Google Scholar 

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217

    Article  Google Scholar 

  • Chanway CP, Holl FB, Turkington R (1989) Effect of Rhizobium leguminosarum biovar trifolii genotype on specificity between Trifolium repens and Lolium perenne. J Ecol 77:1150–1160

    Article  Google Scholar 

  • Cheplick GP (2007) Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environ Exp Bot 60:202–210

    Article  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses — a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Ekblad A, Wallander H, Carlsson R, HussDanell K (1995) Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol 131:443–451

    Article  Google Scholar 

  • Ferrari AE, Wall LG (2008) Coinoculation of black locust with Rhizobium and Glomus on a desurfaced soil. Soil Sci 173:195–202

    Article  CAS  Google Scholar 

  • Fragabeddiar A, Letacon F (1990) Interactions between a VA mycorrhizal fungus and Frankia associated with Alder (Alnus glutinosa (L) Gaetn). Symbiosis 9:247–258

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW et al (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Gurevitch J, Curtis PS, Jones MH (2001) Meta-analysis in ecology. Adv Ecol Res 32(32):199–247

    Article  CAS  Google Scholar 

  • Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean-Rhizobium-Glomus associations. New Phytol 101:427–440

    Article  CAS  Google Scholar 

  • Hedges LV, Olkin I (1985) Statistical methods for meta-analysis.Academic Press, Orlando

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Ianson DC, Linderman RG (1993) Variation in the response of nodulating pigeonpea (Cajanus cajan) to different isolates of mycorrhizal fungi. Symbiosis 15:105–119

    Google Scholar 

  • Jha DK, Sharma GD, Mishra RR (1993) Mineral nutrition in the tripartite interaction between Frankia, Glomus and Alnus at different soil phosphorus regimes. New Phytol 123:307–311

    Article  CAS  Google Scholar 

  • Jia Y, Gray VM, Straker CJ (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Article  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320

    Article  Google Scholar 

  • Miller TE, Travis J (1996) The evolutionary role of indirect effects in communities. Ecology 77:1329–1335

    Article  Google Scholar 

  • Morris WF, Hufbauer RA, Agrawal AA, Bever JD, Borowicz VA, Gilbert GS et al (2007) Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology 88:1021–1029

    Article  PubMed  Google Scholar 

  • Muller J (2003) Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne. Funct Plant Biol 30:419–424

    Article  Google Scholar 

  • Niranjan R, Mohan V, Rao VM (2007) Effect of indole acetic acid on the synergistic interactions of Bradyrhizobium and Glomus fasciculatum on growth, nodulation, and nitrogen fixation of Dalbergia sissoo roxb. Arid Land Res Manag 21:329–342

    Article  CAS  Google Scholar 

  • Novas MV, Cabral D, Godeas AM (2005) Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis 40:23–30

    Google Scholar 

  • Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Article  Google Scholar 

  • Orfanoudakis MZ, Hooker JE, Wheeler CT (2004) Early interactions between arbuscular mycorrhizal fungi and Frankia during colonisation and root nodulation of Alnus glutinosa. Symbiosis 36:69–82

    Google Scholar 

  • Pacovsky RS, Fuller G, Stafford AE, Paul EA (1986) Nutrient and growth interactions in soybeans colonized with Glomus fasciculatum and Rhizobium japonicum. Plant Soil 92:37–45

    Article  Google Scholar 

  • Pan FJ, Cheng WE (1988) Effect of dual inoculation on growth and nutrient uptake in Leucaena leucocephala. Bull Taiwan Forest Res Inst New Ser 3:209–224

    Google Scholar 

  • Reynolds HL, Vogelsang KM, Hartley AE, Bever JD, Schultz PA (2006) Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia 147:348–358

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schultz PA, Miller RM, Jastrow JD, Rivetta CV, Bever JD (2001) Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am J Bot 88:1650–1656

    Article  Google Scholar 

  • Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:S10–S23

    Article  PubMed  Google Scholar 

  • Thompson JN, Fernandez CC (2006) Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology 87:103–112

    Article  PubMed  Google Scholar 

  • Tintjer T, Leuchtmann A, Clay K (2008) Variation in horizontal and vertical transmission of the endophyte Epichloe elymi infecting the grass Elymus hystrix. New Phytol 179:236–246

    Article  PubMed  Google Scholar 

  • Turkington R, Harper JL (1979) Growth, distribution and neighbor relationships of Trifolium repends in a permanet pasture. 4. Fine-scale biotic differentiation. J Ecol 67:245–254

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578

    Article  Google Scholar 

  • Vicari M, Hatcher PE, Ayres PG (2002) Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology 83:2452–2464

    Article  Google Scholar 

  • Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562

    Article  PubMed  Google Scholar 

  • Vonderwell JD, Enebak SA (2000) Differential effects of rhizobacterial strain and dose on the ectomycorrhizal colonization of loblolly pine seedlings. For Sci 46:437–441

    Google Scholar 

Download references

Acknowledgements

We thank Jason Hoeksema, the Bever and Clay lab groups, and two anonymous reviewers for insightful comments on this manuscript. We are grateful to the Indiana University Stat/Math Center for statistical help. We acknowledge the Indiana Academy of Sciences for funding support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. Larimer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information 1

Articles reviewed (PDF 109 kb)

Supporting Information 2

Hedge’s d independent, overall, and interactive effect sizes (DOC 46 kb)

Supporting Information 3

Overall response ratios (PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larimer, A.L., Bever, J.D. & Clay, K. The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51, 139–148 (2010). https://doi.org/10.1007/s13199-010-0083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0083-1

Keywords

Navigation