Skip to main content

Advertisement

Log in

Thraustochytrid Marine Protists: Production of PUFAs and Other Emerging Technologies

  • Invited Review
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Thraustochytrids, the heterotrophic, marine, straminipilan protists, are now established candidates for commercial production of the omega-3 polyunsaturated fatty acid (ω-3 PUFA), docosahexaenoic acid (DHA), that is important in human health and aquaculture. Extensive screening of cultures from a variety of habitats has yielded strains that produce at least 50% of their biomass as lipids, and DHA comprising at least 25% of the total fatty acids, with a yield of at least 5 g L−1. Most of the lipids occur as triacylglycerols and a lesser amount as phospholipids. Numerous studies have been carried out on salinity, pH, temperature, and media optimization for DHA production. Commercial production is based on a fed batch method, using high C/N ratio that favors lipid accumulation. Schizochytrium DHA is now commercially available as nutritional supplements for adults and as feeds to enhance DHA levels in larvae of aquaculture animals. Thraustochytrids are emerging as a potential source of other PUFAs such as arachidonic acid and oils with a suite of PUFA profiles that can have specific uses. They are potential sources of asataxanthin and carotenoid pigments, as well as other lipids. Genes of the conventional fatty acid synthesis and the polyketide-like PUFA synthesis pathways of thraustochytrids are attracting attention for production of recombinant PUFA-containing plant oils. Future studies on the basic biology of these organisms, including biodiversity, environmental adaptations, and genome research are likely to point out directions for biotechnology explorations. Potential areas include enzymes, polysaccharides, and secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe E, Hayashi Y, Hama Y, Hayashi M, Inagaki M, Ito M (2006) A novel phosphatidylcholine which contains pentadecanoic acid at sn-1 and docosahexaenoic acid at sn-2 in Schizochytrium sp. F26-b. J Biochem 140:247–253

    Article  PubMed  CAS  Google Scholar 

  • Aki T, Hachida K, Yoshinaga M, Katai Y, Yamasaki T, Kawamoto S, Kakizono T, Maoka T, Shigeta S, Suzuki O, Ono K (2003) Thraustochytrid as a potential source of carotenoids. J Am Oil Chem Soc 80:789–794

    Article  CAS  Google Scholar 

  • Armenta RE, Burja A, Radianingtyas H, Barrow CJ (2006) Critical assessment of various techniques for the extraction of carotenoids and Co-enzyme Q10 from the thraustochytrid strain ONC-T18. J Agric Food Chem 54:9752–9758

    Article  PubMed  CAS  Google Scholar 

  • Bahnweg G (1979a) Studies on the physiology of thraustochytriales I. Growth requirements and nitrogen nutrition of Thraustochytrium spp., Schizochytrium sp., Japoochytrium sp., Ulkenia spp., and Labyrinthuloides spp. Veröff Inst Meeresforsch Bremerhaven 17:245–268

    CAS  Google Scholar 

  • Bahnweg G (1979b) Studies on the physiology of thraustochytriales II. Carbon nutrition of Thraustochytrium spp., Schizochytrium sp., Japoochytrium sp., Ulkenia spp., and Labyrinthuloides spp. Veröff Inst Meeresforsch Bremerhaven 17:269–273

    CAS  Google Scholar 

  • Bailey RB, DiMasi D, Hansen JM, Mirrasoul PJ, Ruecker CM, Veeder III, George T, Kaneko T, Barclay WR (2003) Enhanced production of lipids containing poloyunsaturated fatty acids by very high density cultures of eukaryotic microbes in fermentors. United States Patent 6,607,900

  • Bajpai PK, Bajpai P, Ward OP (1991) Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304. J Am Oil Chem Soc 68:509–514

    Article  CAS  Google Scholar 

  • Barclay WR (1994a) Food product having high concentrations of omega-3 highly unsaturated fatty acids. US Patent 5,340,594

  • Barclay WR (1994b) Process for growing Thraustochytrium and Schizochytrium using non-chloride salts to produce a micro-floral biomass having omega-3 highly unsaturated fatty acids. US Patent 5,340,742

  • Barclay W, Zeller S (1996) Nutritional enhancement of n-3 and n-6 fatty acids in rotifers and Artemia nauplii by feeding spray-dried Schizochytrium sp. J World Aquac Soc 27:314–322

    Article  Google Scholar 

  • Barclay WR, Weaver C, Metz J (2005) Development of a docosahexaenoic acid production technology using Schizochytrium: a historical perspective. In: Cohen Z, Ratledge C (eds) Single cell oil. AOCS, Champaign, Illinois

    Google Scholar 

  • Bongiorni L, Pusceddu A, Danovaro R (2005) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305

    Article  Google Scholar 

  • Bowles RD, Hunt AE, Bremer GB, Duchars MG, Eaton RA (1999) Long-chain n-3 polyunsaturated fatty acid production by members of the marine protistan group the Thraustochytrids: screening of isolates and optimization of docosahesxaenoic acid production. J Biotechnol 70:193–202

    Article  CAS  Google Scholar 

  • Bremer GB, Talbot G (1995) Cellulolytic activity in the marine protist Schizochytrium aggregatum. Bot Mar 38:37–41

    Article  CAS  Google Scholar 

  • Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. App Microbiol Biotechnol 72:1161–1169

    Article  CAS  Google Scholar 

  • Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:210–214

    Article  CAS  Google Scholar 

  • Cohen Z, Ratleldge C (2005) Single cell oil. AOCS, Champagne, Illinois

    Google Scholar 

  • Colaco A, Raghukumar C, Mohandass C, Cardigos F, Santos RS (2006) Effect of shallow-water venting in Azores on a few marine biota. Cah Biol Mar 47:359–364

    Google Scholar 

  • Connor WE (2000) Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71(Suppl):171S–175S

    PubMed  CAS  Google Scholar 

  • Damude HG, Kinney AJ (2007) Engineering oilseed plants for a sustainable, land-based source of long chain polyunsaturated fatty acids. Lipids 42:179–185

    Article  PubMed  CAS  Google Scholar 

  • Dufosse L, Galaup P, Yaron A, Malis-Arad S, Blanc P, Chidrambara-Murthy K, Ravishankar G (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406

    Article  CAS  Google Scholar 

  • Fan KW, Chen F (2007a) Production of high-value products by marine microalgae thraustocytrids. In: Yang S-T (ed) Bioprocessing for value-added products from renewable resources. New Technologies and Applications. Amsterday, Elsevier, pp 293–324

    Chapter  Google Scholar 

  • Fan KW, Vrijmoed LLP, Jones EBG (2002) Physiological studies of subtropical mangrove thraustochytrids. Bot Mar 45:50–57

    Article  Google Scholar 

  • Fan K-W, Jiang Y, Faan Y-W, Chen F (2007b) Lipid characterization of mangrove thraustochytrid—Schizochytrium mangrovei. J Agric Food Chem 55:2906–2210

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S (1973) Zoosporic marine fungi (Thraustochytriaceae and Dermocystidiaceae). Ann Rev Microbiol 27:13–25

    Article  CAS  Google Scholar 

  • Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S, Metz JG (2006) Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41:739–747

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Yukino T, Watanabe F, Miyamoto E, Nakano Y (2007) Effect of vitamin B-12 enriched thraustochytrids on the population growth of rotifers. Biosci Biotechnol Biochem 71:221–225

    Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Erata M, Higashihara T (1998) Schizochytrium limacinum sp. nov., a new thraustocytrid from a mangrove area in the West Pacific Ocean. Mycol Res 102:439–448

    Article  Google Scholar 

  • Huang J, Aki T, Yokochi T, Nakahara T, Honda D, Kawamoto S, Shigeta S, Ono K, Suzuki O (2003) Grouping newly isolated docosahexaenoic acid-producing Thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes. Mar Biotechnol 5:450–457

    Article  PubMed  CAS  Google Scholar 

  • Iida I, Nakahara T, Yokochi T, Kamisaka Y, Yagi H, Yamaoka M, Suzuki O (1996) Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J Ferment Bioeng 81:76–78

    Article  CAS  Google Scholar 

  • Jain R, Raghukumar S, Chandramohan D (2004) Enhancement of the production of the polyunsaturated fatty acid, docosahexaenoic acid in thraustochytrid protists. Mar Biotechnol (Suppl) 6:S59–S65

    Google Scholar 

  • Jain R, Raghukumar S, Tharanathan R, Bhosle NB (2005) Extracellular polysaccharide production by thraustochytrid protists. Mar Biotechnol 7:184–192

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen N, Aasen IM, Strom AR (2007) Endogenously synthesized (−)-proto-quercitol and glycine betaine are principal compatible solutes of Schizochytrium sp. strain S8 (ATCC 20889) and three new isolates of phylogenetically related thraustochytrids. Appl Environ Microbiol 73:5848–5856

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Fan K-W, Wong RT-Y, Chen F (2004) Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agric Food Chem 52:1196–1200

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Fukuba T, Naganuma T (1999) Biomass of thraustochytrid protoctists in coastal water. Mar Ecol Prog Ser 189:27–33

    Article  CAS  Google Scholar 

  • Kumon Y, Yokochi T, Nakahara T, Yamaoka M, Mito K (2002) Production of long-chain polyunsaturated fatty acids by monoxenic growth of labyrinthulids on oil-dispersed agar medium. Appl Microbiol Biotechnol 60:275–280

    Article  PubMed  CAS  Google Scholar 

  • Kumon Y, Yokoyama R, Yokochi T, Honda D, Nakahara T (2003) A new labyrinthulid isolate, which solely produces n-6 docosapentaenoic acid. Appl Microbiol Biotechnol 63:22–28

    Article  PubMed  CAS  Google Scholar 

  • Kumon Y, Yokoyama R, Haque Z, Yokochi T, Honda D, Nakahara T (2005a) A new labyrinthulid isolate that produces only docosahexaenoic acid. Mar Biotechnol (NY) 8:170–177

    Article  CAS  Google Scholar 

  • Kumon Y, Yokochi T, Nakahara T (2005b) High yields of long-chain polyunsaturated fatty acids by labyrinthulids on soybean lecithin-dispersed agar medium. Appl Microbiol Biotechnol 69:253–258

    Article  PubMed  CAS  Google Scholar 

  • Leander CA, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93:459–464

    Article  Google Scholar 

  • Leipe DD, Tong SM, Gogin CL, Slmenda SM, Pieniazek NJ, Sogin ML (1996) 16S-like rDNA sequences from Developayella elegans, Labyurinthuloides haliotidis, and Proteromonas lacerate to confirm that the stramenopiles are a primarily heterotrophic group. Eur J Protistol 32:449–458

    Google Scholar 

  • Lewis TE, Mooney BD, McMeekin TA, Nichols PD (1998) New Australian microbial sources of polyunsaturated fatty acids. Chem Aust 65:37–39

    CAS  Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (1999) The biotechnological potential of thraustochytrids. Mar Biotechnol 1:580–587

    Article  PubMed  CAS  Google Scholar 

  • Lewis TE, Nichols P, McMeekin P (2000) Production of polyunsaturated fatty acids by Australian Thraustochytrids: aquaculture applications. In: Hatchery feeds for aquaculture. Proceedings of a workshop held in Cairns. 9–10 March 2000. pp. 43–49

  • Lewis TE, Nichols PD, McMeekin PA (2001) Sterol and squalene content of a docosahexaenoic-acid-producing thraustochytrid: influence of culture age, temperature, and dissolved oxygen. Mar Biotechnol 3:439–447

    Article  PubMed  CAS  Google Scholar 

  • Li ZY, Ward OP (1994) Production of docosahexaenoic acid (DHA) by Thraustocytrium roseum. J Ind Microbiol 13:238–341

    Article  PubMed  CAS  Google Scholar 

  • Morita E, Kumon Y, Nakahara T, Kagiwada S, Noguchi T (2006) Docosahexaenoic acid production and lipid-body formation in Schizochytrium limacinum SR21. Mar Biotechnol 8:319–327

    Article  PubMed  CAS  Google Scholar 

  • Nakahara T, Yokochi T, Higashihara T, Tanaka S, Yaguchi T, Honda D (1996) Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from Yap Islands. J Am Oil Chem Soc 73:1421–1426

    Article  CAS  Google Scholar 

  • Okuyama H, Orikasa Y, Nishida T (2007) In vivo conversion of triacylglycerol to docosahexaenoic acid-containing phospholipids in a thraustochytrid-like microorganism, strain 12B. Biotechnol Lett 29:1977–1981

    Article  PubMed  CAS  Google Scholar 

  • Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto Y, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H (2006) Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol Lett 28:197–202

    Article  PubMed  CAS  Google Scholar 

  • Porter D (1990) Phylum Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 388–398

    Google Scholar 

  • Qiu X, Hong H, MacKenzie SL (2001) Identification of a D4-desaturase from Thraustocytrium s. involved in the biosynthesis of docosahexaqenoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem 276:31561–31566

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz C, Douek J, Weisz R, Shabtay A, Rinkevich B (2006) Isolation and characterization of four novel thraustochytrid strains from a colonial tunicate. Indian J Mar Sci 35:341–350

    Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  • Raghukumar S (2006) Marine eukaryote diversity, with particular reference to fungi: lessons learnt from prokaryotes. Indian J Mar Sci 35:388–398

    Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183:113–131

    Article  Google Scholar 

  • Raikar MT, Raghukumar S, Vani V, David JJ, Chandramohan D (2001) Thraustochytrid protists degrade hydrocarbons. Indian J Mar Sci 30:139–145

    CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 11:807–815

    Article  CAS  Google Scholar 

  • Riemann F, Schaumann K (1993) Thraustochytrid protists in Antarctic fast ice? Antarct Sci 5:279–280

    Article  Google Scholar 

  • Sakata T, Fujisawa T, Yoshikawa T (2000) Colony formation and fatty acid composition of marine labyrinthulid isolates grown on agar plates. Fish Sci 66:84–90

    Article  CAS  Google Scholar 

  • Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the n-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:146–153

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Ward OP (1997a) Production of high yields of docosahexaenoic acid by Thraustochytrium roseum ATCC 28210. J Ind Microbiol 16:370–373

    Article  Google Scholar 

  • Singh A, Ward OP (1997b) Microbial production of docosahexaenoic acid (DHA, C22:6). Adv Appl Microbiol 45:271–312

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Wilson S, Ward OP (1996) Docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC20892. J Microbiol Biotechnol 12:76–83

    Article  CAS  Google Scholar 

  • Song X, Zhang X, Guo N, Zhu L, Kuang C (2007) Assessment of marine thraustochytrid Schizochytrium limacinum OUC88 for mariculture by enriched feeds. Fish Sci 73:566–573

    Article  CAS  Google Scholar 

  • Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1–27

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    Article  PubMed  CAS  Google Scholar 

  • Takao Y, Nagasaki K, Honda D (2007) Squashed ball-like dsDNA virus infecting a marine fungoid protist Sicyoidochytrium minutum (Thraustochytriaceae, Labyrinthulomycetes). Aquat Microb Ecol 49:101–108

    Article  Google Scholar 

  • Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1434

    Article  CAS  Google Scholar 

  • Yamasaki T, Aki T, Shinozaki M, Taguchi M, Kawamoto S, Ono K (2006) Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J Biosci Bioeng 102:323–327

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama R, Honda d (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199–211

    Article  CAS  Google Scholar 

  • Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosaheaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76

    Article  CAS  Google Scholar 

  • Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27:467–473

    Article  PubMed  CAS  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seshagiri Raghukumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghukumar, S. Thraustochytrid Marine Protists: Production of PUFAs and Other Emerging Technologies. Mar Biotechnol 10, 631–640 (2008). https://doi.org/10.1007/s10126-008-9135-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9135-4

Keywords

Navigation