Skip to main content
Log in

Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus

  • Short Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Catharanthus roseus today occupies the central position in ongoing metabolic engineering efforts in medicinal plants. The entire multi-step biogenetic pathway of its very expensive anticancerous alkaloids vinblastine and vincristine is fairly very well dissected at biochemical and gene levels except the pathway steps leading to biosynthesis of monomeric alkaloid catharanthine and tabersonine. In order to enhance the plant-based productivity of these pharma molecules for the drug industry, cell and tissue cultures of C. roseus are being increasingly tested to provide their alternate production platforms. However, a rigid developmental regulation and involvement of different cell, tissues, and organelles in the synthesis of these alkaloids have restricted the utility of these cultures. Therefore, the present study was carried out with pushing the terpenoid indole alkaloid pathway metabolic flux towards dimeric alkaloids vinblastine and vincristine production by over-expressing the two upstream pathway genes tryptophan decarboxylase and strictosidine synthase at two different levels of cellular organization viz. callus and leaf tissues. The transformation experiments were carried out using Agrobacterium tumefaciens LBA1119 strain having tryptophan decarboxylase and strictosidine synthase gene cassette. The callus transformation reported a maximum of 0.027% dry wt vindoline and 0.053% dry wt catharanthine production, whereas, the transiently transformed leaves reported a maximum of 0.30% dry wt vindoline, 0.10% catharanthine, and 0.0027% dry wt vinblastine content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Canel C, Lopes-Cardoso MI, Whitmer S et al (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    Article  CAS  PubMed  Google Scholar 

  • De Luca V, Balsevich J, Tyler RT et al (1986) Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J Plant Physiol 125:147–156

    Article  Google Scholar 

  • Di Fiore S, Fisher N, Schillberg S (2004) Transient gene expression of recombinant terpenoid indole alkaloid enzymes in Catharanthus roseus leaves. Plant Mol Biol Rep 22:15–22

    Article  Google Scholar 

  • Dubouzet JG, Matsuda F, Ishihara A et al (2013) Production of indole alkaloids by metabolic engineering of the tryptophan pathway in rice. Plant Biotechnol J 11:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305

    Article  CAS  Google Scholar 

  • Geerlings A, Ibañez MM, Memelink J et al (2000) Molecular cloning and analysis of strictosidine beta-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJ, Pennings EJ, van der Helm P et al (1995) Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgenic Res 4:315–323

    Article  CAS  PubMed  Google Scholar 

  • Guirimand G, Burlat V, Oudin A et al (2009) Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Rep 28:1215–1234

    Article  CAS  PubMed  Google Scholar 

  • Guirimand G, Courdavault V, Lanoue A et al (2010) Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol 10:182–201

    PubMed  PubMed Central  Google Scholar 

  • Hong SB, Peebles CAM, Shanks JV et al (2006) Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J Biotechnol 122:28–38

    Article  CAS  PubMed  Google Scholar 

  • Hughes EH, Hong SB, Shanks JV et al (2002) Characterization of an inducible promoter system in Catharanthus roseus hairy roots. Biotechnol Prog 18:1183–1186

    Article  CAS  PubMed  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI et al (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276

    Article  CAS  PubMed  Google Scholar 

  • Islas I, Loyola-Vargas VM, Miranda-Ham ML (1994) Tryptophan decarboxylase activity in transformed roots from Catharanthus roseus and its relationship to tryptamine, ajmalicine, and catharanthine accumulation during the culture cycle. In vitro Cell Dev Biol 30:81–83

    Article  Google Scholar 

  • Jaggi M, Kumar S, Sinha AK (2011) Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl Microbiol Biotechnol 90:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 13:3901–3907

    Google Scholar 

  • Kapila J, DeRycke R, van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Kumar S, Bhatia S (2016) A polymorphic (GA/CT) n- SSR influences promoter activity of tryptophan decarboxylase gene in Catharanthus roseus L Don. Sci Rep 6:33280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Sarma RK, Dwivedi V et al (2015) Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves. Plant Sci 239:55–66

    Article  Google Scholar 

  • Li JF, Park E, von Arnim AG, Nebenfuhr A (2009) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:6. doi:10.1186/1746-4811-5-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu DH, Ren WW, Cui LJ, Zhang LD, Sun XF, Tang KX (2011) Enhanced accumulation of catharanthine and vindoline in Catharanthus roseus hairy roots by over expression of transcriptional factor ORCA2. Afr J Biotechnol 10:3260–3268

    Article  CAS  Google Scholar 

  • Liu J, Cai J, Wang R, Yang S (2017) Transcriptional regulation and transport of terpenoid indole alkaloid in Catharanthus roseus: exploration of new research directions. Int J Mol Sci 18:53

    Article  Google Scholar 

  • Lu X, Tang K, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci. doi:10.3389/fpls.2016.01647

  • Mathur AK, Mathur A, Seth R et al (2006) Biotechnological interventions in designing specialty medicinal herbs for twenty first century: some emerging trends in pathway modulation through metabolic engineering. In: Sharma RK, Arora R (eds) Herbal drugs: a twenty first century perspective. Jaypee Brothers Medical Publishers, New Delhi, pp 83–94

    Google Scholar 

  • Morgan JA, Shanks JV (2000) Determination of metabolic rate limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79:137–145

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Noe W, Mollenschott C, Berlin J (1984) Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol 3:281–288

    Article  CAS  PubMed  Google Scholar 

  • Oudin A, Mahroug S, Courdavault V et al (2007) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 65:13–30

    Article  CAS  PubMed  Google Scholar 

  • Pandey SS, Singh S, Babu CSV et al (2016) Fungal endophyte of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloids biosynthesis. Sci Rep. doi:10.1038/srep26583

  • Pasquali G, Porto DD, Fett-Neto AG (2006) Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. J Biosci Bioeng 101:287–296

    Article  CAS  PubMed  Google Scholar 

  • Peebles CAM, Hong SB, Gibson SI et al (2005) Transient effects of over-expressing anthranilate synthase a and b subunits in Catharanthus roseus hairy roots. Biotechnol Prog 21:1572–1576

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Easson MLAE, Froese J et al (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. PNAS USA 11:6224–6229

    Article  Google Scholar 

  • Rai A, Smita SS, Sing AK et al (2013) Heteromeric and homomeric geranyl diphosphate synthase from Catharanthus roseus and their role in monoterpenoid indole alkaloid biosynthesis. Mol Plant 6:1531–1549

    Article  CAS  PubMed  Google Scholar 

  • Rischer H, Oresic M, Seppanen-Laakso T et al (2006) Gene-tometabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. PNAS USA 103:5614–5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi N, Weaver J, Cornejo M et al (2015) An efficient transformation method for estrogen-inducible transgene expression in Catharanthus roseus hairy roots. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-014-0614-1

  • Sainsbury F, Lomonossoff PG (2014) Transient expressions of synthetic biology in plants. Curr Opin Plant Biol 19:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Verma M, Verma P et al (2017) Optimization of a Bacopa monnieri-based genetic transformation model for testing the expression efficiency of pathway gene constructs of medicinal crops. In Vitro Cell Dev Biol Plant. doi:10.1007/s11627-017-9804-y

  • Slater A, Scott NW, Fowler MR (2008) Plant biotechnology. Oxford University Press pp 64

  • Srivastava T, Das S, Sopory SK, Srivastava PS (2009) A reliable protocol for transformation of Catharanthus roseus through Agrobacterium tumefaciens. Physiol Mol Biol Plants 15:93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens LH, Blom TJM, Verpoorte R (1993) Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep 12:573–576

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, De-Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taha HS, Abo-Aba SEM, El-Hamshary OIM et al (2008) In vitro studies on Egyptian Catharanthus roseus (L.) G. Don: III. Effects of extra tryptophan decarboxylase and strictosidine synthase genes copies in indole alkaloid production. Res J Cell Mol Biol 2:18–23

    CAS  Google Scholar 

  • Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25:132

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden R, Jabos DJ, Snoeijer W et al (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:1241–1253

    Article  Google Scholar 

  • Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. MGG Molecular & General Genetics 220(2):245–250

  • Verma P, Mathur AK, Srivastava A, Mathur A (2012) Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloids pathway in Catharanthus roseus: a literature up-date. Protoplasma 249:255–268

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Sharma A, Khan SA, Mathur AK, Shanker K (2014) Morphogenetic and chemical stability of long-term maintained Agrobacterium-mediated transgenic Catharanthus roseus plants. Nat Pro Res 29:315–320

  • Verma P, Sharma A, Khan SA et al. (2015a) Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor. Protoplasma 252:373–381

  • Verma P, Mathur AK, Khan SA et al (2015b) Transgenic studies for modulating terpenoid indole alkaloids pathway in Catharanthus roseus: present status and future options. Phytochem Rev DOI. doi:10.1007/s11101-015-9447-8

  • Verpoorte R, van der Heijden R, ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21:467–479

    Article  CAS  Google Scholar 

  • Wang CT, Liu H, Gao XS, Zhang HX (2010) Over expression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29:887–894

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Xing S, Pan Q et al (2012) Development of efficient Catharanthus roseus regeneration and transformation system using Agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechol 12:34–46

    Article  Google Scholar 

  • Wang X, Pan YJ, Chang BW et al (2016) Ethylene-induced vinblastine accumulation is related to activated expression of downstream TIA pathway genes in Catharanthus roseus. BioMed Res Int. doi:10.1155/2016/3708187

  • Weaver J, Goklany S, Rizvi N et al (2014) Optimizing the transient fast agro-mediated seedling transformation (FAST) method in Catharanthus roseus seedlings. Plant Cell Rep 33:89–97

    Article  CAS  PubMed  Google Scholar 

  • Whitmer S, Canel C, Hallard D et al (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol 116:853–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmer S, van der Heijden R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203

    Article  CAS  PubMed  Google Scholar 

  • Whitmer S, Canel C, van der Heijden R, Verpoorte R (2003) Long term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tissue Organ Cult 74:73–80

    Article  CAS  Google Scholar 

  • Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457

    Article  CAS  Google Scholar 

  • Zuwairi SM, Mustafa NR, Pomahocova B et al (2014) Analysis of metabolites in the terpenoid pathway of Catharanthus roseus cell suspensions. Plant Cell Tissue Org Cult 117:225–239

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Director, CSIR-CIMAP, Lucknow for providing the facility to carry out this research work. AS is highly thankful to the Department of Science and Technology (DST), Gov. of India for providing an INSPIRE fellowship (IF120009). We also thank Prof. Johan Memelink of Leiden University for providing the Agrobacterium tumefaciens strain LBA1119 with a construct (<hpt-<Tdc2-<Str-gus>).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Mathur.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Verma, P., Mathur, A. et al. Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus . Protoplasma 255, 425–435 (2018). https://doi.org/10.1007/s00709-017-1151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1151-7

Keywords

Navigation