Skip to main content
Log in

Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Chlamydomonas acidophila LAFIC-004 is an acidophilic strain of green microalgae isolated from coal mining drainage. In the present work, this strain was cultivated in acidic medium (pH 3.6) under phototrophic, mixotrophic, and heterotrophic regimes to determine the best condition for growth and lipid production, simultaneously assessing possible morphological and ultrastructural alterations in the cells. For heterotrophic and mixotrophic treatments, two organic carbon sources were tested: 1 % glucose and 1 % sodium acetate. Lipid content and fatty acid profiles were only determined in phototrophic condition. The higher growth rates were achieved in phototrophic conditions, varying from 0.18 to 0.82 day−1. Glucose did not result in significant growth increase in either mixotrophic or heterotrophic conditions, and acetate proved to be toxic to the strain in both conditions. Oil content under phototrophic condition was 15.9 % at exponential growth phase and increased to 54.63 % at stationary phase. Based on cell morphology (flow cytometry and light microscopy) and ultrastructure (transmission electron microscopy), similar characteristics were observed between phototrophic and mixotrophic conditions with glucose evidencing many lipid bodies, starch granules, and intense fluorescence. Under the tested conditions, mixotrophic and heterotrophic modes did not result in increased neutral lipid fluorescence. It can be concluded that the strain is a promising lipid producer when grown until stationary phase in acidic medium and under a phototrophic regime, presenting a fatty acid profile suitable for biodiesel production. The ability to grow this strain in acidic mining residues suggests a potential for bioremediation with production of useful biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • American Oil Chemists’ Society (2006) AOCS Official Method Ce 1c-89

    Google Scholar 

  • Armbrust E, Berges J, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Bissinger V, Jander J, Tittel J (2000) A new medium free of organic carbon to cultivate organisms from extremely acidic mining lakes (pH 2.7). Acta Hydrochim Hydrobiol 28:310–312

    Article  CAS  Google Scholar 

  • Blanc G, Duncan G, Agarkova I et al (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bouzon ZL, Ouriques LC, Oliveira EC (2005) Ultrastructure of tetraspore germination in the agar-producing seaweed Gelidium floridanum (Gelidiales, Rhodophyta). Phycologia 44:09–415

    Article  Google Scholar 

  • Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31(341–74):239pp

    Google Scholar 

  • Bux F (2013) Biotechnological applications of microalgae: biodiesel and value-added products. CRC Press, Boca Ratón, FL

    Book  Google Scholar 

  • Chen GQ, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28:607–616

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Johns MR (1994) Substrate inhibition of Chlamydomonas reinhardtii by acetate in heterotrophic culture. Process Biochem 29:245–252

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1996) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 31:601–604

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  PubMed  Google Scholar 

  • Christie, WW (1989) Gas chromatography and lipids—a practical guide, 1 ed, Matreya

  • Cirulis JT, Strasser BC, Scott JA, Ross GM (2012) Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry A 81A:618–662

    Article  CAS  Google Scholar 

  • Cuaresma M, Garbayo I, Vegab JM, V’ılchez C (2006) Growth and photosynthetic utilization of inorganic carbon of the microalga Chlamydomonas acidophila isolated from Tinto River. Enzyme Microb Technol 40:158–162

    Article  CAS  Google Scholar 

  • Doebbe A, Rupprecht J, Beckmanna J, Mussgnuga JH, Hallmann A, Hankamerb B, Kruse O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol 131:27–33

    Article  CAS  PubMed  Google Scholar 

  • Eibl JK, Corcoran JD, Senhorinho GNA, Zhang K, Hosseini NS, Marsden J, Laamanen CA, Scott JA, Ross GM (2014) Bioprospecting for acidophilic lipid-rich green microalgae isolated from abandoned mine site water bodies. AMB Express 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Sayed S, Hyun-Chul K, Abou-ShanabReda AI, Min-Kyu J, You-Kwan O, Seong-Heon K, Byong-Hun J (2013) Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst Eng 36:827–833

    Article  Google Scholar 

  • Gerloff-Elias A, Spijkerman E, Pröschold T (2005) Effect of external pH on the growth photosynthesis and photosynthetic electron transport of Chlamydomonas acidophila Negoro, isolated from an extremely acidic lake (pH 2.6). Plant Cell Environ 28:1218–1229

    Article  CAS  Google Scholar 

  • Giovanardi M, Ferroni L, Baldisserotto C, Tedeschi P, Maietti A, Pantaleoni L, Pancaldi S (2013) Morphophysiological analyses of Neochloris oleabundans (Chlorophyta) grown mixotrophically in a carbon-rich waste product. Protoplasma 252:1347–1359

    Google Scholar 

  • Guzmán HM, Valido JA, Presmanes KF, Duarte LC (2012) Quick estimation of intraspecific variation of fatty acid composition in Dunaliella salina using flow cytometry and Nile Red. J Appl Phycol 24:1237–1243

    Article  Google Scholar 

  • Harris EH (2009) The Chlamydomonas sourcebook—Vol. I: introduction to Chlamydomonas and its laboratory use, 2nd edn. Academic Press, Oxford, p 444

    Google Scholar 

  • Harwood JL, Jones AL (1989) Lipid metabolism in algae. Adv Bot Res 16:1–53

    Article  CAS  Google Scholar 

  • Inthorn D (2001) Removal of heavy metal by using microalgae. In: Kojima H, Lee YK (eds) Photosynthetic microorganisms in environmental biotechnology. Springer, Hong Kong, pp 111–135

    Google Scholar 

  • Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kain JM (1987) Seasonal growth and photohibition in Plocamium cartilagineum (Rhodophyta) of the Isle of Man. Phycologia 26(1):88–99

    Article  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. PNAS 102(31):11118–11123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar KS, Dahms H-U, Won E-J, Lee J-S, Shin K-H (2015) Microalgae—a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  Google Scholar 

  • Langner U, Jakob T, Stehfest K, Wilhelm C (2009) An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions. Plant Cell Environ 32:250–258

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Yoon BD, Oh HM (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–555

    Article  CAS  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    Article  CAS  PubMed  Google Scholar 

  • Li D, Song J-Z, Li H, Shan M-H, Liang Y, Zhu J, Xie Z (2015) Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation. Febs Lett 589:269–276

    Article  CAS  PubMed  Google Scholar 

  • Liang Y (2013) Producing liquid transportation fuels from heterotrophic microalgae. Appl Energy 104:860–868

    Article  CAS  Google Scholar 

  • Liang YN, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sun Z, Chen F (2014) Biofuels from algae. Ed Elsevier 6:111–142

    Google Scholar 

  • Montero MF, Aristizábal M, Reina GG (2011) Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting. J Appl Phycol 23:053–1057

    Article  Google Scholar 

  • Moon M, Kima C, Park W, Yoo G, Choi Y, Yang J (2013) Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res 2:352–357

    Article  Google Scholar 

  • Mou S, Xu D, Ye N, Zhang X, Liang C, Liang Q, Zheng Z, Zhuang Z, Miao J (2012) Rapid estimation of lipid content in an Antarctic ice alga Chlamydomonas using the lipophilic fluorescent dye BODIPY505/515. J Appl Phycol 24:1169–1176

    Article  CAS  Google Scholar 

  • Neilson AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13:227–264

    Article  CAS  Google Scholar 

  • Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N (2003) Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol Ecol 44:253–259

    Article  CAS  PubMed  Google Scholar 

  • Nozaki H, Takano H, Misumi O et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the hostspring red alga Cyanidioschyzon merolae. BMC Biol 5:1–8

    Article  Google Scholar 

  • Olavenson MM, Stoke PM (1989) Responses of the acidophilic alga Euglena mutabilis (Euglenophyceae) to carbon enrichment at pH 3. J Phycol 25:529–539

    Article  Google Scholar 

  • Perez-Garcia O, Bashan Y, Puente ME (2011) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. J Phycol 47(1):190–199

    Article  PubMed  Google Scholar 

  • Pirastru L, Darwish M, Chu FL, Perreault F, Sirois L, Sleno L, Popovic R (2012) Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment. J Appl Phycol 24:117–124

    Article  CAS  Google Scholar 

  • Přibyl P, Cepák V, Zachleder V (2012) Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:540–561

    Google Scholar 

  • Prochnik SE, Umen U, Nedelcu AM et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 8:486–50

    Article  Google Scholar 

  • Rattanapoltee P, Kaewkannetra P (2014) Cultivation of microalga, Chlorella vulgaris under different auto-hetero-mixotrophic growths as a raw material during biodiesel production and cost evaluation. Energy 78:4–8

    Article  CAS  Google Scholar 

  • Richmond A, Hu Q (2013) Handbook of microalgal culture: biotechnology and Appl Phycol, 2nd edn. Wiley Blackwell, Oxford, pp 1–736

    Book  Google Scholar 

  • Roleda MY, Slocombe SP, Leakey RJG, Day JG, Bell EM, Stanley MS (2013) Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour Technol 129:439–449

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Inoue M, Yamada M, Matsuda Y (1998) Control of gametic differentiation and activity by light in Chlamydomonas reinhardtii. Plant Cell Physiol 39:8–15

    Article  CAS  Google Scholar 

  • Saltpati GG, Pal R (2014) Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining-an improved technique. Ann Microbiol. doi:10.1007/s13213-014-0937-5

    Google Scholar 

  • Seckbach J, Oren A (2007) Oxygenic photosynthetic microorganisms in extreme environments: possibilities and limitations. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, The Dordrecht, pp 5–25

    Chapter  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program—biodiesel from algae. U.S. Department of Energy’s Office of Fuels Development. National Renewable Energy Laboratory. NREL/TP-580-24190

  • Simioni C, Rover T, Schmidt EC, Felix MRL, Polo LK, Santos R, Costa GB, Kreusch M, Pereira DT, Ouriques C, Bouzon ZL (2014) Effects of brefeldin A on the endomembrane system and germ tube formation of the tetraspore of Gelidium floridanum (Rhodophyta, Florideophyceae). J Phycol 50(3):577–596

    Article  CAS  PubMed  Google Scholar 

  • Spijkerman E (2007) Phosphorus acquisition by Chlamydomonas acidophila under autotrophic and osmo-mixotrophic growth conditions. J Exp Bot 58(15–16):4195–4202

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Tittel J, Bissinger V, Gaedke U, Kamjunke N (2005) Inorganic carbon limitation and mixotrophic growth in Chlamydomonas from an acidic mining lake. Protist 156:63–75

    Article  CAS  PubMed  Google Scholar 

  • Trainor FR (2009) Breaking the habit. Integrating plasticity into taxonomy. Syst Biodivers 7:95–100

    Article  Google Scholar 

  • USDOE. 2010. National algal biofuels technology roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. 124p

  • Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan N, Sung M, Yim SS, Park MS, Yang JW, Jeong KJ (2013) Evaluation of intracellular lipid bodies in Chlamydomonas reinhardtii strains by flow cytometry. Bioresour Technol 138:30–37

    Article  CAS  PubMed  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell 8:1856–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starch less Isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell 9(8):1251–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Zhang B, Huang A, Huan L, He L, Lin A, Niu J, Wang G (2014) Detection of intracellular neutral lipid content in the marine microalgae Prorocentrum micans and Phaeodactylum tricornutum using Nile red and BODIPY 505/515. J Appl Phycol 26:1659–1668

    Article  CAS  Google Scholar 

  • Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101:2287–2293

    Article  CAS  PubMed  Google Scholar 

  • Zitta CS, Rover T, Hayashi L, Bouzon ZL (2013) Callus ontogeny of the Kappaphycus alvarezii (Rhodophyta, Gigartinales) brown tetrasporophyte strain. J Appl Phycol 25:615–629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil) and the National Council for Scientific and Technological Development (CNPQ). Luana dos S. Souza has been benefited by a scholarship from CAPES, and this work is part of her PhD thesis. The authors would also like to thank technicians of the Central Laboratory of Electronic Microscopy (LCME) and Multiuser Laboratory of Biology Studies (LAMEB), both from the Federal University of Santa Catarina, Brazil (UFSC).

Authors’ contributions

All the authors contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luana dos S. Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, L.d.S., Simioni, C., Bouzon, Z.L. et al. Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions. Protoplasma 254, 1385–1398 (2017). https://doi.org/10.1007/s00709-016-1030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1030-7

Keywords

Navigation