Skip to main content
Log in

Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Patel, A. K., Tambat, V. S., Chen, C.-W., Chauhan, A. S., Kumar, P., Vadrale, A. P., Huang, C.-Y., Dong, C.-D., & Singhania, R. R. (2022). Recent advancements in astaxanthin production from microalgae: A review. Bioresource Technology, 364, 128030.

    Article  CAS  PubMed  Google Scholar 

  2. Ashok, A., Andrabi, S. S., Mansoor, S., Kuang, Y., Kwon, B. K., & Labhasetwar, V. (2022). Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants, 11, 408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khoo, K. S., Ooi, C. W., Chew, K. W., Foo, S. C., Lim, J. W., Tao, Y., Jiang, N., Ho, S.-H., & Show, P. L. (2021). Permeabilization of Haematococcus pluvialis and solid-liquid extraction of astaxanthin by CO2-based alkyl carbamate ionic liquids. Chemical Engineering Journal, 411, 128510.

    Article  CAS  Google Scholar 

  4. Bjørklund, G., Gasmi, A., Lenchyk, L., et al. (2022). The role of astaxanthin as a nutraceutical in health and age-related conditions. Molecules, 27, 7167.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang, Y., Kong, W., Wang, L., Zhang, J. Z., Li, Y., Liu, X., & Li, Y. (2019). Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Physical Chemistry Chemical Physics, 21, 1336–1343.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, H., He, W., Mahukpégo Dansou, D., et al. (2022). Astaxanthin improved the storage stability of docosahexaenoic acid-enriched eggs by inhibiting oxidation of non-esterified poly-unsaturated fatty acids. Food Chemistry, 381, 132256.

    Article  CAS  PubMed  Google Scholar 

  7. Martínez-Álvarez, Ó., Calvo, M. M., & Gómez-Estaca, J. (2020). Recent advances in astaxanthin micro/nanoencapsulation to improve its stability and functionality as a food ingredient. Marine Drugs, 18, 406.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aoi, W., Maoka, T., Abe, R., Fujishita, M., & Tominaga, K. (2018). Comparison of the effect of non-esterified and esterified astaxanthins on endurance performance in mice. Journal of Clinical Biochemistry and Nutrition, 62, 161–166.

    Article  CAS  PubMed  Google Scholar 

  9. Chan, S. S., Khoo, K. S., Chew, K. W., Ling, T. C., & Show, P. L. (2022). Recent advances biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium - A review. Bioresource Technology, 344, 126159.

    Article  CAS  PubMed  Google Scholar 

  10. Vardanega, R., Cerezal-Mezquita, P., & Veggi, P. C. (2022). Supercritical fluid extraction of astaxanthin-rich extracts from Haematococcus pluvialis: Economic assessment. Bioresource Technology, 361, 127706.

    Article  CAS  PubMed  Google Scholar 

  11. Zgheib, N., Saade, R., Khallouf, R., & Takache, H. (2018). Extraction of astaxanthin from microalgae: Process design and economic feasibility study. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/323/1/012011

    Article  Google Scholar 

  12. Villaró, S., Ciardi, M., Morillas-españa, A., Sánchez-zurano, A., Acién-fernández, G., & Lafarga, T. (2021). Microalgae derived astaxanthin: Research and consumer trends and industrial use as food. Foods, 10, 2303.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 7, 531.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Panis, G., & Carreon, J. R. (2016). Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research, 18, 175–190.

    Article  Google Scholar 

  15. Liyanaarachchi, V. C., Nishshanka, G. K. S. H., Premaratne, R. G. M. M., Ariyadasa, T. U., Nimarshana, P. H. V., & Malik, A. (2020). Astaxanthin accumulation in the green microalga Haematococcus pluvialis: Effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnology Reports, 28, e00538.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Le-Feuvre, R., Moraga-Suazo, P., González-Durán, J., Martin, S. S., Valdevenito, A., Henríquez, V., Rojas, V., Agurto, A., & Agurto-Muñoz, C. (2021). Chemical induction of polyploidy increases astaxanthin accumulation capacity in the microalgae Haematococcus lacustris (Gir-Chantr) Rostaf. Algal Research, 59, 102465.

    Article  Google Scholar 

  17. Borowiak, D., Lenartowicz, P., Grzebyk, M., Wiśniewski, M., Lipok, J., & Kafarski, P. (2021). Novel, automated, semi-industrial modular photobioreactor system for cultivation of demanding microalgae that produce fine chemicals—the next story of H. pluvialis and astaxanthin. Algal Research, 53, 102151.

    Article  Google Scholar 

  18. Khoo, K. S., Ahmad, I., Chew, K. W., Iwamoto, K., Bhatnagar, A., & Show, P. L. (2023). Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 96, 101071.

    Article  Google Scholar 

  19. Li, L., Chen, Z., & Huang, Q. (2020). Exogenous γ-aminobutyric acid promotes biomass and astaxanthin production in Haematococcus pluvialis. Algal Research, 52, 102089.

    Article  Google Scholar 

  20. Molazadeh, M., Ahmadzadeh, H., Pourianfar, H. R., Lyon, S., & Rampelotto, P. H. (2019). The use of microalgae for coupling wastewater treatment with CO2 biofixation. Frontiers in Bioengineering and Biotechnology, 7, 42.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sovacool, B. K., Griffiths, S., Kim, J., & Bazilian, M. (2021). Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renewable and Sustainable Energy Reviews, 141, 110759.

    Article  CAS  Google Scholar 

  22. Al-Jabri, H., Das, P., Khan, S., Thaher, M., & Abdulquadir, M. (2021). Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water (Switzerland), 13, 27.

    CAS  Google Scholar 

  23. Okeke, E. S., Ejeromedoghene, O., Okoye, C. O., Ezeorba, T. P. C., Nyaruaba, R., Ikechukwu, C. K., Oladipo, A., & Orege, J. I. (2022). Microalgae biorefinery: An integrated route for the sustainable production of high-value-added products. Energy Conversion and Management: X, 16, 100323.

    Article  CAS  Google Scholar 

  24. Angell, A., de Nys, R., Mangott, A., & Vucko, M. J. (2018). The effects of concentration and supplementation time of natural and synthetic sources of astaxanthin on the colouration of the prawn Penaeus monodon. Algal Research, 35, 577–585.

    Article  Google Scholar 

  25. Wang, F., Gao, B., Wu, M., Huang, L., & Zhang, C. (2019). A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Research, 39, 101466.

    Article  Google Scholar 

  26. Mularczyk, M., Michalak, I., & Marycz, K. (2020). Astaxanthin and other nutrients from Haematococcus pluvialis—Multifunctional applications. Marine Drugs, 18, 459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gallego, R., Arena, K., Dugo, P., Mondello, L., Ibáñez, E., & Herrero, M. (2020). Application of compressed fluid–based extraction and purification procedures to obtain astaxanthin-enriched extracts from Haematococcus pluvialis and characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry. Analytical and Bioanalytical Chemistry, 412, 589–599.

    Article  CAS  PubMed  Google Scholar 

  28. Liyanaarachchi, V. C., Premaratne, M., Ariyadasa, T. U., Nimarshana, P. H. V., & Malik, A. (2021). Two-stage cultivation of microalgae for production of high-value compounds and biofuels: A review. Algal Research, 57, 102353.

    Article  Google Scholar 

  29. Hong, M. E., Chang, W. S., Patel, A. K., Oh, M. S., Lee, J. J., & Sim, S. J. (2019). Microalgal-based carbon sequestration by converting LNG-fired waste CO2 into red gold astaxanthin: The potential applicability. Energies (Basel)., 12, 1718.

    Article  CAS  Google Scholar 

  30. Zhang, Z., Wang, B., Hu, Q., Sommerfeld, M., Li, Y., & Han, D. (2016). A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis. Biotechnology and Bioengineering, 113, 2088–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao, Y., Hou, Y., Chai, W., Liu, Z., Wang, X., He, C., Hu, Z., Chen, S., & Wang, W. (2020). Transcriptome analysis of Haematococcus pluvialis of multiple defensive systems against nitrogen starvation. Enyzme and Microbial Technology, 134, 109487.

    Article  CAS  Google Scholar 

  32. Vechio, H., Mariano, A. B., & Vieira, R. B. (2021). A new approach on astaxanthin extraction via acid hydrolysis of wet Haematococcus pluvialis biomass. Journal of Applied Phycology, 33, 2957–2966.

    Article  CAS  Google Scholar 

  33. Elsayed Azab, A., Adwas, A., Ibrahim Elsayed, A. S., Adwas, A., Ibrahim Elsayed, A. S., & Quwaydir, F. A. (2019). Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology & Bioengineering, 6, 43–47.

    Article  Google Scholar 

  34. Taherkhani, S., Suzuki, K., & Ruhee, R. T. (2021). A brief overview of oxidative stress in adipose tissue with a therapeutic approach to taking antioxidant supplements. Antioxidants, 10, 594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hosseini, A., Jazini, M., Mahdieh, M., & Karimi, K. (2020). Efficient superantioxidant and biofuel production from microalga Haematococcus pluvialis via a biorefinery approach. Bioresource Technology, 306, 123100.

    Article  CAS  PubMed  Google Scholar 

  36. de Carvalho, J. C., Goyzueta-Mamani, L. D., Molina-Aulestia, D. T., Magalhães Júnior, A. I., Iwamoto, H., Ambati, R. R., Ravishankar, G. A., & Soccol, C. R. (2022). Microbial astaxanthin production from agro-industrial wastes—raw materials, processes, and quality. Fermentation, 8, 484.

    Article  Google Scholar 

  37. Monte, J., Ribeiro, C., Parreira, C., Costa, L., Brive, L., Casal, S., Brazinha, C., & Crespo, J. G. (2020). Biorefinery of Dunaliella salina: Sustainable recovery of carotenoids, polar lipids and glycerol. Bioresource Technology, 297, 122509.

    Article  CAS  PubMed  Google Scholar 

  38. Muniz Souza, R. L., Ramalho Viana, W. K., Martins Moreira, M. S., Soares Filho, A. A., Lisboa, V., de Bezerra Vidigal, R. C., Catter, K. M., Freire Eloy, H. R., & Nogueira Matias, J. F. (2020). Technological innovations in the cultivation of Haematococcus pluvialis microalgae: Review. Sistemas & Gestão, 15, 223–234.

    Article  Google Scholar 

  39. Bauer, A., & Minceva, M. (2019). Direct extraction of astaxanthin from the microalgae Haematococcus pluvialis using liquid–liquid chromatography. RSC Advances, 9, 22779–22789.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Oslan, S. N. H., Shoparwe, N. F., Yusoff, A. H., et al. (2021). A review on haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules, 11, 1–15.

    Article  Google Scholar 

  41. Chekanov, K., Schastnaya, E., Solovchenko, A., & Lobakova, E. (2017). Effects of CO2 enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis. Journal of Photochemistry and Photobiology B: Biology, 171, 58–66.

    Article  CAS  PubMed  Google Scholar 

  42. Radice, R. P., Fiorentino, R., De Luca, M., Limongi, A. R., Viviano, E., Bermano, G., & Martelli, G. (2021). An innovative protocol to select the best growth phase for astaxanthin biosynthesis in H. pluvialis. Biotechnology Reports, 31, e00655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bauer, A., & Minceva, M. (2021). Examination of photo-, mixo-, and heterotrophic cultivation conditions on haematococcus pluvialis cyst cell germination. Applied Sciences (Switzerland), 11, 7201.

    Article  CAS  Google Scholar 

  44. Jannel, S., Caro, Y., Bermudes, M., & Petit, T. (2020). Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: Advances and key challenges to allow its industrial use as novel food ingredient. Journal of Marine Science and Engineering, 8, 789.

    Article  Google Scholar 

  45. Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., et al. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62–93.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Y., Ye, Y., Ding, W., Mao, X., Li, Y., Gerken, H., & Liu, J. (2020). Astaxanthin is ketolated from zeaxanthin independent of fatty acid synthesis in chromochloris zofingiensis. Plant Physiology, 183, 883–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, D., Liu, W., Li, A., Wang, C., & Hu, Z. (2019). Discovery of geranylgeranyl pyrophosphate synthase (GGPPS) paralogs from haematococcus pluvialis based on iso-seq analysis and their function on astaxanthin biosynthesis. Marine Drugs, 17, 696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reiter, R. J., Sharma, R., Rosales-Corral, S., Manucha, W., de Chuffa, L. G., & de Pires Campos Zuccari, D. A. (2021). Melatonin and pathological cell interactions: Mitochondrial glucose processing in cancer cells. International Journal of Molecular Sciences, 22, 12494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aldridge, J., Carr, S., Weber, K. A., & Buan, N. R. (2021). Anaerobic production of isoprene by engineered methanosarcina species archaea. Applied and Environment Microbiology, 87, 1–14.

    Article  Google Scholar 

  50. Ballentine, B. R. (2022) Developing an Enymatic Synthesis for Acetoacetyl-CoA Using Acetyl-CoA Acetyltransferase (AtoB) from Escherichia Coli. The University of North Carolina at Greensboro

  51. Valent, P., Hadzijusufovic, E., Grunt, T., Karlic, H., Peter, B., Herrmann, H., Eisenwort, G., Hoermann, G., Schulenburg, A., & Willmann, M. (2018). Ludwig boltzmann cluster oncology (LBC ONC): First 10 years and future perspectives. Wiener Klinische Wochenschrift, 130, 517–529.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Darragh, K., Orteu, A., Black, D., Byers, K. J. R. P., Szczerbowski, D., Warren, I. A., Rastas, P., Pinharanda, A., Davey, J. W., & Fernanda Garza, S. (2021). A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies. PLoS Biology, 19, e3001022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, R., Yu, D., Deng, Z., & Liu, T. (2021). Harnessing in vitro platforms for natural product research: In vitro driven rational engineering and mining (iDREAM). Current Opinion in Biotechnology, 69, 1–9.

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Narayanan, A., Simon, D. P., Shanmugam, K., Ravi, S., Ranga Rao, A., & Ravishankar, G. A. (2021). Metabolic engineering of astaxanthin pathway and heterologous production in novel organisms. Global Perspectives on Astaxanthin. https://doi.org/10.1016/B978-0-12-823304-7.00024-6

    Article  Google Scholar 

  55. Maj, A., Dziewit, L., Drewniak, L., Garstka, M., Krucon, T., Piatkowska, K., Gieczewska, K., Czarnecki, J., Furmanczyk, E., & Lasek, R. (2020). In vivo creation of plasmid pCRT01 and its use for the construction of carotenoid-producing Paracoccus spp. strains that grow efficiently on industrial wastes. Microbial Cell Factories, 19, 1–14.

    Article  Google Scholar 

  56. Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88, 3425–3431.

    Article  CAS  ADS  Google Scholar 

  57. Li, T., Zheng, Y., Yu, L., & Chen, S. (2014). Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass and Bioenergy, 66, 204–213.

    Article  CAS  Google Scholar 

  58. Pang, N., & Chen, S. (2017). Effects of C5 organic carbon and light on growth and cell activity of Haematococcus pluvialis under mixotrophic conditions. Algal Research, 21, 227–235.

    Article  Google Scholar 

  59. Pang, N., Gu, X., Fu, X., & Chen, S. (2019). Effects of gluconate on biomass improvement and light stress tolerance of Haematococcus pluvialis in mixotrophic culture. Algal Research, 43, 101647.

    Article  Google Scholar 

  60. Huang, B., Fan, Y., Cui, L., Li, C., & Guo, C. (2023). Cold stress response mechanisms in anther development. International Journal of Molecular Sciences, 24, 30.

    Article  CAS  ADS  Google Scholar 

  61. Ho, S., Chen, C., Lee, D. J., & Chang,. (2011). Perspectives on microalgal CO2-emission mitigation systems, A review. Biotechnology Advances, 29, 189–198.

    Article  CAS  PubMed  Google Scholar 

  62. Azizi, M., Moteshafi, H., & Hashemi, M. (2020). Distinctive nutrient designs using statistical approach coupled with light feeding strategy to improve the Haematococcus pluvialis growth performance and astaxanthin accumulation. Bioresource Technology, 300, 122594.

    Article  CAS  PubMed  Google Scholar 

  63. Li, F., Cai, M., Wu, Y., Lian, Q., Qian, Z., Luo, J., Zhang, Y., Zhang, N., Li, C., & Huang, X. (2022). Effects of nitrogen and light intensity on the astaxanthin accumulation in motile cells of Haematococcus pluvialis. Frontiers in Marine Science, 9, 909237.

    Article  Google Scholar 

  64. Zhu, Y., Zhang, Z., Xu, X., Cheng, J., Chen, S., Tian, J., Yang, W., & Crocker, M. (2021). Simultaneous promotion of photosynthesis and astaxanthin accumulation during two stages of Haematococcus pluvialis with ammonium ferric citrate. Science of the Total Environment., 750, 141689.

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Chen, F., Xu, N., Liu, K., Lv, R., Shi, J., Liu, J., Sun, X., & Hu, C. (2022). Increasing production and bio-accessibility of natural astaxanthin in Haematococcus pluvialis by screening and culturing red motile cells under high light condition. Bioresource Technology, 364, 128067.

    Article  CAS  PubMed  Google Scholar 

  66. Yang, S., Zhao, W., Mou, H., & Sun, H. (2021). Improving astaxanthin production of Haematococcus pluvialis by an efficient fed-batch strategy in a photobioreactor. Algal Research, 60, 102539.

    Article  Google Scholar 

  67. Dos Santos, A. C., & Lombardi, A. T. (2017). Growth, photosynthesis and biochemical composition of Haematococcus pluvialis at various pH post-graduate program in ecology and natural resources. Algal Biomass Utilization., 8, 1–15.

    Google Scholar 

  68. Ma, R., Tao, X., Chua, E. T., Ho, S.-H., Shi, X., Liu, L., Xie, Y., & Chen, J. (2022). Enhancing astaxanthin production in Haematococcus pluvialis QLD by a pH steady NaHCO3–CO2–C/NH4Cl–N culture system. Algal Research, 64, 102697.

    Article  Google Scholar 

  69. Hwang, S.-W., Choi, H. I., & Sim, S. J. (2019). Acidic cultivation of Haematococcus pluvialis for improved astaxanthin production in the presence of a lethal fungus. Bioresource Technology, 278, 138–144.

    Article  CAS  PubMed  Google Scholar 

  70. Marinho, Y. F., Malafaia, C. B., de Araújo, K. S., da Silva, T. D., dos Santos, A. P. F., de Moraes, L. B., & Gálvez, A. O. (2021). Evaluation of the influence of different culture media on growth, life cycle, biochemical composition, and astaxanthin production in Haematococcus pluvialis. Aquaculture International, 29, 757–778.

    Article  CAS  Google Scholar 

  71. Do, T.-T., Ong, B.-N., Nguyen Tran, M.-L., Nguyen, D., Melkonian, M., & Tran, H.-D. (2019). Biomass and astaxanthin productivities of Haematococcus pluvialis in an angled twin-layer porous substrate photobioreactor: Effect of inoculum density and storage time. Biology (Basel), 8, 68.

    CAS  PubMed  Google Scholar 

  72. Lim, K. C., Yusoff, F. M., Shariff, M., & Kamarudin, M. S. (2018). Astaxanthin as feed supplement in aquatic animals. Reviews in Aquaculture, 10, 738–773.

    Article  Google Scholar 

  73. Scibilia, L., Girolomoni, L., Berteotti, S., Alboresi, A., & Ballottari, M. (2015). Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Research, 12, 170–181.

    Article  Google Scholar 

  74. Imamoglu, E., Dalay, M. C., & Sukan, F. V. (2009). Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. New Biotechnology, 26, 199–204.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, W., Zhou, X., Zhang, Y., Cheng, P., Ma, R., Cheng, W., & Chu, H. (2018). Enhancing astaxanthin accumulation in Haematococcus pluvialis by coupled light intensity and nitrogen starvation in column photobioreactors. Journal of Microbiology and Biotechnology, 28, 2019–2028.

    Article  CAS  PubMed  Google Scholar 

  76. de Moraes, L. B. S., Mota, G. C. P., dos Santos, E. P., da Silva Campos, C. V. F., da Silva, B. A. B., Olivera Gálvez, A., & de Souza Bezerra, R. (2023). Haematococcus pluvialis cultivation and astaxanthin production using different nitrogen sources with pulse feeding strategy. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03824-7

    Article  Google Scholar 

  77. Kim, B., Youn Lee, S., Lakshmi Narasimhan, A., Kim, S., & Oh, Y. K. (2022). Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances. Bioresource Technology, 343, 126124.

    Article  CAS  PubMed  Google Scholar 

  78. Lee, S. Y., Cho, J. M., Chang, Y. K., & Oh, Y.-K. (2017). Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresource Technology, 244, 1317–1328.

    Article  CAS  PubMed  Google Scholar 

  79. Kholany, M., Trébulle, P., Martins, M., Ventura, S. P. M., Nicaud, J., & Coutinho, J. A. P. (2020). Extraction and purification of violacein from Yarrowia lipolytica cells using aqueous solutions of surfactants. Journal of Chemical Technology & Biotechnology, 95, 1126–1134.

    Article  CAS  Google Scholar 

  80. Nemer, G., Louka, N., Vorobiev, E., Salameh, D., Nicaud, J.-M., Maroun, R. G., & Koubaa, M. (2021). Mechanical cell disruption technologies for the extraction of dyes and pigments from microorganisms: A review. Fermentation, 7, 36.

    Article  CAS  Google Scholar 

  81. Kai, S., Matsuo, Y., Nakagawa, S., Kryukov, K., Matsukawa, S., Tanaka, H., Iwai, T., Imanishi, T., & Hirota, K. (2019). Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinION™ nanopore sequencer. FEBS Open Bio, 9, 548–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Praveenkumar, R., Lee, J., Vijayan, D., Lee, S. Y., Lee, K., Sim, S. J., Hong, M. E., Kim, Y.-E., & Oh, Y.-K. (2020). Morphological change and cell disruption of Haematococcus pluvialis cyst during high-pressure homogenization for astaxanthin recovery. Applied Sciences, 10, 513.

    Article  CAS  Google Scholar 

  83. Patel, A., Arora, N., Pruthi, V., & Pruthi, P. A. (2019). A novel rapid ultrasonication-microwave treatment for total lipid extraction from wet oleaginous yeast biomass for sustainable biodiesel production. Ultrasonics Sonochemistry, 51, 504–516.

    Article  CAS  PubMed  Google Scholar 

  84. Wang, M., Chen, S., Zhou, W., Yuan, W., & Wang, D. (2020). Algal cell lysis by bacteria: A review and comparison to conventional methods. Algal Research, 46, 101794.

    Article  Google Scholar 

  85. Al Hattab, M., Ghaly, A., & Hammoud, A. (2015). Microalgae oil extraction pre-treatment methods: Critical review and comparative analysis. Journal of Fundamental Renewable Energy Applications, 5, 172–198.

    Article  Google Scholar 

  86. Irshad, M., Hong, M. E., Myint, A. A., Kim, J., & Sim, S. J. (2019). Safe and complete extraction of astaxanthin from Haematococcus pluvialis by efficient mechanical disruption of cyst cell wall. International Journal of Food Engineering, 15, 10.

    Article  Google Scholar 

  87. Irshad, M., Myint, A. A., Hong, M. E., Kim, J., & Sim, S. J. (2019). One-pot, simultaneous cell wall disruption and complete extraction of astaxanthin from Haematococcus pluvialis at room temperature. ACS Sustainable Chemistry & Engineering, 7, 13898–13910.

    Article  CAS  Google Scholar 

  88. Molino, A., Rimauro, J., Casella, P., Cerbone, A., Larocca, V., Chianese, S., Karatza, D., Mehariya, S., Ferraro, A., & Hristoforou, E. (2018). Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. Journal of Biotechnology, 283, 51–61.

    Article  CAS  PubMed  Google Scholar 

  89. Yasui, K. (2018). Acoustic cavitation and bubble dynamics. Springer.

    Book  Google Scholar 

  90. Rahman, M. M., Hosano, N., & Hosano, H. (2022). Recovering microalgal bioresources: A review of cell disruption methods and extraction technologies. Molecules. https://doi.org/10.3390/molecules27092786

    Article  PubMed  PubMed Central  Google Scholar 

  91. Liu, Z., Zeng, X., Cheng, J., Liu, D., & Aadil, R. M. (2018). The efficiency and comparison of novel techniques for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis. International Journal of Food Science & Technology, 53, 2212–2219.

    Article  CAS  Google Scholar 

  92. Leong, H. Y., Ooi, C. W., Law, C. L., Julkifle, A. L., Ling, T. C., & Show, P. L. (2018). Application of liquid biphasic flotation for betacyanins extraction from peel and flesh of Hylocereus polyrhizus and antioxidant activity evaluation. Separation and Purification Technology, 201, 156–166.

    Article  CAS  Google Scholar 

  93. Khoo, K. S., Lee, S. Y., Ooi, C. W., Fu, X., Miao, X., Ling, T. C., & Show, P. L. (2019). Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 288, 121606.

    Article  CAS  PubMed  Google Scholar 

  94. Khoo, K. S., Chew, K. W., Yew, G. Y., Manickam, S., Ooi, C. W., & Show, P. L. (2020). Integrated ultrasound-assisted liquid biphasic flotation for efficient extraction of astaxanthin from Haematococcus pluvialis. Ultrasonics Sonochemistry, 67, 105052.

    Article  CAS  PubMed  Google Scholar 

  95. Shehadul Islam, M., Aryasomayajula, A., & Selvaganapathy, P. R. (2017). A review on macroscale and microscale cell lysis methods. Micromachines (Basel), 8, 83.

    Article  Google Scholar 

  96. Park, J.-Y., Oh, Y.-K., Choi, S.-A., & Kim, M.-C. (2020). Recovery of astaxanthin-containing oil from Haematococcus pluvialis by nano-dispersion and oil partitioning. Applied Biochemistry and Biotechnology, 190, 1304–1318.

    Article  CAS  PubMed  Google Scholar 

  97. Huang, W.-C., Liu, H., Sun, W., Xue, C., & Mao, X. (2018). Effective astaxanthin extraction from wet Haematococcus pluvialis using switchable hydrophilicity solvents. ACS Sustain Chem Eng., 6, 1560–1563.

    Article  CAS  Google Scholar 

  98. Liu, H., Huang, W.-C., Guo, N., & Mao, X. (2020). Application of secondary amine switchable hydrophilicity solvents for astaxanthin extraction from wet Haematococcus pluvialis. Algal Research, 48, 101892.

    Article  Google Scholar 

  99. Myint, A. A., Hariyanto, P., Irshad, M., Ruqian, C., Wulandari, S., Hong, M. E., Sim, S. J., & Kim, J. (2021). Strategy for high-yield astaxanthin recovery directly from wet Haematococcus pluvialis without pretreatment. Bioresource Technology, 346, 126616.

    Article  Google Scholar 

  100. Nitsos, C., Filali, R., Taidi, B., & Lemaire, J. (2020). Current and novel approaches to downstream processing of microalgae: A review. Biotechnology Advances, 45, 107650.

    Article  CAS  PubMed  Google Scholar 

  101. Choi, S.-A., Oh, Y.-K., Lee, J., Sim, S. J., Hong, M. E., Park, J.-Y., Kim, M.-S., Kim, S. W., & Lee, J.-S. (2019). High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures. Bioresource Technology, 274, 120–126.

    Article  CAS  PubMed  Google Scholar 

  102. Liu, Z., Yue, Z., Zeng, X., Cheng, J., & Aadil, R. M. (2019). Ionic liquid as an effective solvent for cell wall deconstructing through astaxanthin extraction from Haematococcus pluvialis. International Journal of Food Science & Technology, 54, 583–590.

    Article  CAS  ADS  Google Scholar 

  103. Florindo, C., Lima, F., Ribeiro, B. D., & Marrucho, I. M. (2019). Deep eutectic solvents: Overcoming 21st century challenges. Current Opinion in Green and Sustainable Chemistry, 18, 31–36.

    Article  Google Scholar 

  104. Pang, J., Sha, X., Chao, Y., Chen, G., Han, C., Zhu, W., Li, H., & Zhang, Q. (2017). Green aqueous biphasic systems containing deep eutectic solvents and sodium salts for the extraction of protein. RSC Advances, 7, 49361–49367.

    Article  CAS  ADS  Google Scholar 

  105. Lee, Y. R., & Row, K. H. (2016). Comparison of ionic liquids and deep eutectic solvents as additives for the ultrasonic extraction of astaxanthin from marine plants. Journal of Industrial and Engineering Chemistry., 39, 87–92.

    Article  CAS  Google Scholar 

  106. Mehariya, S., Fratini, F., Lavecchia, R., & Zuorro, A. (2021). Green extraction of value-added compounds form microalgae: A short review on natural deep eutectic solvents (NaDES) and related pre-treatments. Journal of Environmental Chemical Engineering, 9, 105989.

    Article  CAS  Google Scholar 

  107. Shalaby, S. M., Madkour, F. F., El-Kassas, H. Y., Mohamed, A. A., & Elgarahy, A. M. (2021). Green synthesis of recyclable iron oxide nanoparticles using Spirulina platensis microalgae for adsorptive removal of cationic and anionic dyes. Environmental Science and Pollution Research., 28, 65549–65572.

    Article  CAS  PubMed  Google Scholar 

  108. Pitacco, W., Samorì, C., Pezzolesi, L., Gori, V., Grillo, A., Tiecco, M., Vagnoni, M., & Galletti, P. (2022). Extraction of astaxanthin from Haematococcus pluvialis with hydrophobic deep eutectic solvents based on oleic acid. Food Chemistry, 379, 132156.

    Article  CAS  PubMed  Google Scholar 

  109. Machado, F. R. S., Jr., Trevisol, T. C., Boschetto, D. L., Burkert, J. F. M., Ferreira, S. R. S., Oliveira, J. V., & Burkert, C. A. V. (2016). Technological process for cell disruption, extraction and encapsulation of astaxanthin from Haematococcus pluvialis. Journal of Biotechnology, 218, 108–114.

    Article  CAS  PubMed  Google Scholar 

  110. Zhao, X., Zhang, X., Liu, H., Zhu, H., & Zhu, Y. (2019). Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity. Food Science and Biotechnology, 28, 1637–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, Y., Miao, F., Geng, Y., Lu, D., Zhang, C., & Zeng, M. (2012). Accurate quantification of astaxanthin from Haematococcus crude extract spectrophotometrically. Chinese Journal of Oceanology and Limnology., 30, 627–637.

    Article  ADS  Google Scholar 

  112. Praveenkumar, R., Gwak, R., Kang, M., Shim, T. S., Cho, S., Lee, J., Oh, Y.-K., Lee, K., & Kim, B. (2015). Regenerative astaxanthin extraction from a single microalgal (Haematococcus pluvialis) cell using a gold nano-scalpel. ACS Applied Materials & Interfaces, 7, 22702–22708.

    Article  CAS  Google Scholar 

  113. Saini, R. K., & Keum, Y.-S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90–103.

    Article  CAS  PubMed  Google Scholar 

  114. Sun, H., Guan, B., Kong, Q., Geng, Z., & Wang, N. (2016). Repeated cultivation: Non-cell disruption extraction of astaxanthin for Haematococcus pluvialis. Science and Reports, 6, 1–12.

    Google Scholar 

  115. Kim, D. Y., Vijayan, D., Praveenkumar, R., Han, J. I., Lee, K., Park, J. Y., Chang, W. S., Lee, J. S., & Oh, Y. K. (2016). Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresource Technology, 199, 300–310.

    Article  CAS  PubMed  Google Scholar 

  116. Kleinert, C., & Griehl, C. (2022). In situ extraction (milking) of the two promising Botryococcus braunii strains Showa and Bot22 under optimized extraction time. Journal of Applied Phycology, 34, 269–283.

    Article  CAS  Google Scholar 

  117. Khoo, K. S., Chew, K. W., Yew, G. Y., Leong, W. H., Chai, Y. H., Show, P. L., & Chen, W. H. (2020). Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresource Technology, 304, 122996.

    Article  CAS  PubMed  Google Scholar 

  118. Bhadana, B., & Tyagi, R. D. (2019). Milking of lipids from oleaginous microorganisms. Biodiesel Production. https://doi.org/10.1061/9780784415344.ch16

    Article  Google Scholar 

  119. Jackson, B. A., Bahri, P. A., & Moheimani, N. R. (2019). Repetitive extraction of botryococcene from Botryococcus braunii: A study of the effects of different solvents and operating conditions. Journal of Applied Phycology, 31, 3491–3501.

    Article  CAS  Google Scholar 

  120. Samorì, C., Pezzolesi, L., Galletti, P., Semeraro, M., & Tagliavini, E. (2019). Extraction and milking of astaxanthin from Haematococcus pluvialis cultures. Green Chemistry, 21, 3621–3628.

    Article  Google Scholar 

  121. The Intergovernmental Panel on Climate Change. (2018) Global Warming of 1.5 °C.

  122. Lu, L., Guest, J. S., Peters, C. A., Zhu, X., Rau, G. H., & Ren, Z. J. (2018). Wastewater treatment for carbon capture and utilization. Nature Sustainability, 1, 750–758.

    Article  Google Scholar 

  123. Minx, J. C., Lamb, W. F., Callaghan, M. W., Bornmann, L., & Fuss, S. (2017). Fast growing research on negative emissions. Environmental Research Letters, 12, 035007.

    Article  ADS  Google Scholar 

  124. Davis, W. J. (2017). The relationship between atmospheric carbon dioxide concentration and global temperature for the last 425 million years. Climate, 5, 76.

    Article  Google Scholar 

  125. Krūmiņš, J., Kļaviņš, M., Ozola-davidāne, R., & Ansone-bērtiņa, L. (2022). The prospects of clay minerals from the baltic states for industrial-scale carbon capture: A review. Minerals, 12, 035007.

    Article  Google Scholar 

  126. Kamyab, H., Din, M. F. M., Hosseini, S. E., Ghoshal, S. K., Ashokkumar, V., Keyvanfar, A., Shafaghat, A., Lee, C. T., Bavafaasghar, A., & Majid, M. Z. A. (2016). Optimum lipid production using agro-industrial wastewater treated microalgae as biofuel substrate. Clean Technologies and Environmental Policy, 18, 2513–2523.

    Article  CAS  Google Scholar 

  127. Snæbjörnsdóttir, S., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., & Oelkers, E. H. (2020). Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, 1, 90–102.

    Article  ADS  Google Scholar 

  128. Li, G., Xiao, W., Yang, T., & Lyu, T. (2023). Optimization and process effect for microalgae carbon dioxide fixation technology applications based on carbon capture: A comprehensive review. C (Basel), 9, 35.

    CAS  Google Scholar 

  129. Rossi, F., Olguín, E. J., Diels, L., & De Philippis, R. (2015). Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification. New Biotechnology, 32, 109–120.

    Article  CAS  PubMed  Google Scholar 

  130. Ding, G. T., Mohd Yasin, N. H., Takriff, M. S., Kamarudin, K. F., Salihon, J., Yaakob, Z., & Mohd Hakimi, N. I. N. (2020). Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally isolated microalgae: Chlorella sorokiniana UKM2, Coelastrella sp UKM4 and Chlorella pyrenoidosa UKM7. Journal of Water Process Engineering, 35, 101202.

    Article  Google Scholar 

  131. Ghiat, I., & Al-Ansari, T. (2021). A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. Journal of CO2 Utilization, 45, 101432.

    Article  CAS  Google Scholar 

  132. Nguyen, L. N., Vu, M. T., Vu, H. P., Johir, Md. A. H., Labeeuw, L., Ralph, P. J., Mahlia, T. M. I., Pandey, A., Sirohi, R., & Nghiem, L. D. (2023). Microalgae-based carbon capture and utilization: A critical review on current system developments and biomass utilization. Critical Reviews in Environment Science and Technology, 53, 216–238.

    Article  Google Scholar 

  133. Choi, Y. Y., Hong, M. E., Jin, E. S., Woo, H. M., & Sim, S. J. (2018). Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. Bioresource Technology, 249, 519–526.

    Article  CAS  PubMed  Google Scholar 

  134. da Rosa, G. M., de Morais, M. G., & Costa, J. A. V. (2018). Green alga cultivation with monoethanolamine: Evaluation of CO2 fixation and macromolecule production. Bioresource Technology, 261, 206–212.

    Article  PubMed  Google Scholar 

  135. Pham, H.-M., Kwak, H. S., Hong, M.-E., Lee, J., Chang, W. S., & Sim, S. J. (2017). Development of an X-Shape airlift photobioreactor for increasing algal biomass and biodiesel production. Bioresource Technology, 239, 211–218.

    Article  CAS  PubMed  Google Scholar 

  136. Lam, M. K., Lee, K. T., & Mohamed, A. R. (2012). Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control, 10, 456–469.

    Article  CAS  Google Scholar 

  137. Singh, S. P., & Singh, P. (2014). Effect of CO2 concentration on algal growth: A review. Renewable and Sustainable Energy Reviews, 38, 172–179.

    Article  CAS  Google Scholar 

  138. Ahmed, S. F., Mofijur, M., Parisa, T. A., Islam, N., Kusumo, F., Inayat, A., Le, V. G., Badruddin, I. A., Khan, T. M. Y., & Ong, H. C. (2022). Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere, 286, 131656.

    Article  CAS  PubMed  Google Scholar 

  139. Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., Shao, J., Wang, L., & Tsang, D. C. W. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment, 707, 136080.

    Article  CAS  PubMed  ADS  Google Scholar 

  140. Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752, 142168.

    Article  CAS  PubMed  ADS  Google Scholar 

  141. Arun, J., Varshini, P., Prithvinath, P. K., Priyadarshini, V., & Gopinath, K. P. (2018). Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Bioresource Technology, 261, 182–197.

    Article  CAS  PubMed  Google Scholar 

  142. Gouveia, L., Graça, S., Sousa, C., Ambrosano, L., Ribeiro, B., Botrel, E. P., Neto, P. C., Ferreira, A. F., & Silva, C. M. (2016). Microalgae biomass production using wastewater: Treatment and costs Scale-up considerations. Algal Research, 16, 167–176.

    Article  Google Scholar 

  143. Hamza, R. A., Sheng, Z., Iorhemen, O. T., Zaghloul, M. S., & Tay, J. H. (2018). Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewater. Water Research, 147, 287–298.

    Article  CAS  PubMed  Google Scholar 

  144. Kim, S. Y., Park, J. W., Noh, J. H., Bae, Y. H., & Maeng, S. K. (2022). Potential organic matter management for industrial wastewater guidelines using advanced dissolved organic matter characterization tools. Journal of Water Process Engineering. https://doi.org/10.1016/j.jwpe.2022.102604

    Article  Google Scholar 

  145. Zhu, X., Treu, L., Kougias, P. G., Campanaro, S., & Angelidaki, I. (2018). Converting mesophilic upflow sludge blanket (UASB) reactors to thermophilic by applying axenic methanogenic culture bioaugmentation. Chemical Engineering Journal, 332, 508–516.

    Article  CAS  Google Scholar 

  146. Stávková, J., & Maroušek, J. (2021). Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere, 276, 130097.

    Article  PubMed  Google Scholar 

  147. Rahimi, S., Modin, O., & Mijakovic, I. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology Advances, 43, 107570.

    Article  CAS  PubMed  Google Scholar 

  148. Men, Y., Zheng, L., Zhang, L., Li, Z., Wang, X., Zhou, X., Cheng, S., & Bao, W. (2020). Effects of adding zero valent iron on the anaerobic digestion of cow manure and lignocellulose. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.590200

    Article  PubMed  PubMed Central  Google Scholar 

  149. Goswami, R. K., Mehariya, S., Verma, P., Lavecchia, R., & Zuorro, A. (2021). Microalgae-based biorefineries for sustainable resource recovery from wastewater. Journal of Water Process Engineering, 40, 101747.

    Article  Google Scholar 

  150. Xing, X. G., Qian, G. Y., Chan, S. S., Xin, G. R., Chew, K. W., & Show, P. L. (2022). Current issues and challenges of applying microalgae in environmental biotechnology. Microalgae for Environmental Biotechnology. https://doi.org/10.1201/9781003202196-3

    Article  Google Scholar 

  151. Gao, N., Kamran, K., Quan, C., & Williams, P. T. (2020). Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science, 79, 100843.

    Article  Google Scholar 

  152. Pan, M., Zhu, X., Pan, G., & Angelidak, I. (2021). Integrated valorization system for simultaneous high strength organic wastewater treatment and astaxanthin production from Haematococcus pluvialis. Bioresource Technology, 326, 124761.

    Article  CAS  PubMed  Google Scholar 

  153. Coutinho Rodrigues, O. H., Itokazu, A. G., Rörig, L., Maraschin, M., Corrêa, R. G., Pimentel-Almeida, W., & Moresco, R. (2021). Evaluation of astaxanthin biosynthesis by Haematococcus pluvialis grown in culture medium added of cassava wastewater. International Biodeterioration and Biodegradation, 163, 105269.

    Article  CAS  Google Scholar 

  154. Potivichayanon, S., Toensakes, R., Supromin, N., & Seaung, K. (2020). Removal of high levels of cyanide and COD from cassava industrial wastewater by a fixed-film sequencing batch reactor. Water, Air, and Soil pollution, 231, 1–14.

    Article  Google Scholar 

  155. Madeira, J. G. F., Boloy, R. A. M., Delgado, A. R. S., Lima, F. R., Coutinho, E. R., de Pereira Filho, R., & C. (2017). Ecological analysis of hydrogen production via biogas steam reforming from cassava flour processing wastewater. Journal of Cleaner Production, 162, 709–716.

    Article  CAS  Google Scholar 

  156. Kim, T. Y., Hong, J. E., Park, H. M., Lee, U. J., & Lee, S. Y. (2020). Decontamination of low-level contaminated water from radioactive cesium and cobalt using microalgae. Journal of Radioanalytical and Nuclear Chemistry, 323, 903–908.

    Article  CAS  Google Scholar 

  157. Iwamoto, K., & Shiraiwa, Y. (2017). Accumulation of cesium by aquatic plants and algae. In D. K. Gupta & C. Walther (Eds.), Impact of cesium on plants and the environment (pp. 171–185). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  158. Yu, B. S., Hong, M. E., Sung, Y. J., Choi, H. I., Chang, W. S., Kwak, H. S., & Sim, S. J. (2021). A green decontamination technology through selective biomineralization of algicidal microorganisms for enhanced astaxanthin production from Haematococcus pluvialis at commercial scale. Bioresource Technology, 332, 125121.

    Article  CAS  PubMed  Google Scholar 

  159. Research and Markets. (2022) Astaxanthin Market Size, Share & Trends Analysis Report By Product (Dried Algae Meal Or Biomass, Oil, Softgel, Liquid), By Source (Natural, Synthetic), By Application, By Region, And Segment Forecasts, 2023 - 2030.

  160. Liu, C., Hu, B., Cheng, Y., Guo, Y., Yao, W., & Qian, H. (2021). Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. Bioresource Technology, 337, 125398.

    Article  CAS  PubMed  Google Scholar 

  161. Butler, T., & Golan, Y. (2020). Astaxanthin production from microalgae. In A. Alam, X. Jing-Liang, & Z. Wang (Eds.), Microalgae biotechnology for food, health and high value products (pp. 175–242). Singapore: Springer Singapore.

    Chapter  Google Scholar 

  162. Mota, G. C. P., de Moraes, L. B. S., Oliveira, C. Y. B., Oliveira, D. W. S., de Abreu, J. L., Dantas, D. M. M., & Gálvez, A. O. (2022). Astaxanthin from Haematococcus pluvialis: Processes, applications, and market. Preparative Biochemistry & Biotechnology, 52, 598–609.

    Article  CAS  Google Scholar 

  163. Ahuja, K., and Rawat, A. (2019) Astaxanthin market size by source (synthetic, natural), by application (dietary supplement, personal care, pharmaceuticals, food & beverages, animal feed aquaculture, livestock, pets) industry outlook report, regional analysis, application potential, price trends, competitive market share & forecast, 2019–2026. Global Market Insights, US

  164. Le-Feuvre, R., Moraga-Suazo, P., Gonzalez, J., Martin, S. S., Henríquez, V., Donoso, A., & Agurto-Muñoz, C. (2020). Biotechnology applied to Haematococcus pluvialis Fotow: Challenges and prospects for the enhancement of astaxanthin accumulation. Journal of Applied Phycology, 32, 3831–3852.

    Article  CAS  Google Scholar 

  165. Rodríguez-Sifuentes, L., Marszalek, J. E., Hernández-Carbajal, G., & Chuck-Hernández, C. (2021). Importance of downstream processing of natural astaxanthin for pharmaceutical application. Frontiers in Chemical Engineering., 2, 601483.

    Article  Google Scholar 

  166. Gao, Z., Meng, C., Gao, H., Zhang, X., Xu, D., Su, Y., Wang, Y., Zhao, Y., & Ye, N. (2013). Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 2, 4-epibrassinolide (EBR). Biological Research, 46, 201–206.

    Article  PubMed  Google Scholar 

  167. Praveenkumar, R., Lee, K., Lee, J., & Oh, Y.-K. (2015). Breaking dormancy: An energy-efficient means of recovering astaxanthin from microalgae. Green Chemistry., 17, 1226–1234.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge the support of the recent algae initiative in gathering peers of algae researchers by launching an Algal Biotechnology Consortium (ABC), which is a platform for algae researchers to share, communicate and outreach their algae research to create sustainable solutions and greener future. The authors would also like to thank the Editor and all the anonymous reviewers for providing their insightful comments and suggestions to improve the quality of this work. The figures were created with BioRender.com.

Funding

The authors would like to express their heartfelt gratitude to UM International Collaboration Grant (Project no: ST020-2022). This work was also supported by the SATU Joint Research Scheme Program 2022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woranart Jonglertjunya or Kuan Shiong Khoo.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilawan, B., Chan, S.S., Ling, T.C. et al. Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward. Mol Biotechnol 66, 402–423 (2024). https://doi.org/10.1007/s12033-023-00768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00768-1

Keywords

Navigation