Skip to main content
Log in

Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Two freshwater microalgae including Chlamydomonas mexicana and Scenedesmus obliquus were grown on Bold Basal Medium (BBM) with different levels of salinity up to 100 mM NaCl. The dry biomass and lipid content of microalgae were improved as the concentration of NaCl increased from 0 to 25 mM. Highest dry weight (0.8 and 0.65 g/L) and lipid content (37 and 34 %) of C. mexicana and S. obliquus, respectively, were obtained in BBM amended with 25 mM NaCl. The fatty acid composition of the investigated species was also improved by the increased NaCl concentration. At 50 mM, NaCl palmitic acid (35 %) and linoleic acid (41 %) were the dominant fatty acids in C. mexicana, while oleic acid (41 %) and α-linolenic acid (20 %) were the major fractions found in S. obliquus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hiremath S, Mathad M (2010) Impact of salinity on the physiological and biochemical traits of chlorella vulgaris Beijerinck. J Algal Biomass Utln 1:51–59

    Google Scholar 

  2. Sforza E, Bertucco A, Morosinotto T, Giacometti GM (2012) Photobioreactors for microalgal growth and oil production with Nannochloropsis salina: from lab-scale experiments to large-scale design. Chem Eng Res Des 90:1151–1158

    Article  CAS  Google Scholar 

  3. Zhao G, Yu J, Jiang F, Zhang X, Tan T (2012) The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresour Technol 114:466–471

    Article  CAS  Google Scholar 

  4. Mujtaba G, Choi W, Lee C-G, Lee K (2012) Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour Technol 123:279–283

    Article  CAS  Google Scholar 

  5. Feng P, Deng Z, Fan L, Hu Z (2012) Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J Biosci Bioeng 114:405–410

    Article  CAS  Google Scholar 

  6. Sousa C, de Winter L, Janssen M, Vermuë MH, Wijffels RH (2012) Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. Bioresour Technol 104:565–570

    Article  CAS  Google Scholar 

  7. Lin Q, Gu N, Lin J (2012) Effect of ferric ion on nitrogen consumption, biomass and oil accumulation of a Scenedesmus rubescens-like microalga. Bioresour Technol 112:242–247

    Article  CAS  Google Scholar 

  8. Kaewkannetra P, Enmak P, Chiu TY (2012) The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnol Bioproc E 17:591–597

    Article  CAS  Google Scholar 

  9. Booth WA, Beardall J (1991) Effect of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant alga Dunaliella salina (Chlorophyta). Phycologia 30:220–225

    Article  Google Scholar 

  10. Richmond A (1986) A Cell response to environmental factors. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC Press Inc, Florida, pp 89–95

    Google Scholar 

  11. Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  CAS  Google Scholar 

  12. Alyabyev AJ, Loseva NL, Gordon LK, Andreyeva IN, Rachimova GG, Tribunskih VI, Ponomareva AA, Kemp RB (2007) The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells. Thermochim Acta 458:65–70

    Article  CAS  Google Scholar 

  13. Park IH, Rao KK, Hall D (1991) Photoproduction of hydrogen, hydrogen peroxide and ammonia using immobilized cyanobacteria. Int J Hydrog Energ 16:313–318

    Article  CAS  Google Scholar 

  14. Metzger P, Largeau C (1999) Chemicals of Botryococcus braunii. In: Cohen Z (ed) Chemicals from microalgae. Taylor Francis, London, pp 205–260

    Google Scholar 

  15. Wang Z, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal Lipid Bodies: stress Induction, Purification, and Biochemical Characterization in Wild-Type and Starchless Chlamydomonas reinhardtii. Eukaryot Cell 8(12):1856–1868

    Article  CAS  Google Scholar 

  16. Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    Article  CAS  Google Scholar 

  17. Zhila NO, Kalacheva GS, Volova TG (2010) Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J Appl Phycol 23:47–52

    Article  Google Scholar 

  18. Takagi M, Karseno Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  Google Scholar 

  19. Kaçka A, Dönmez G (2008) Isolation of Dunaliella spp. from a hypersaline lake and their ability to accumulate glycerol. Bioresour Technol 99:8348–8352

    Article  Google Scholar 

  20. Abou-Shanab RAI, Matter IA, Kim S-N, Oh Y-K, Choi J, Jeon B-H (2011) Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake. Biomass Bioenerg 35:3079–3085

    Article  CAS  Google Scholar 

  21. Choi J-A, Hwang J-H, Dempsey BA, Abou-Shanab RAI, Min B, Song H, Lee DS, Kim JR, Cho Y, Hong S, Jeon B-H (2011) Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energ Environ Sci 4:3513

    Article  CAS  Google Scholar 

  22. Garofalo R (2009) Algae and aquatic biomass for a sustainable production of 2nd generation biofuels. AquaFUELs‐Taxonomy, Biology and Biotechnology, pp 1–258

  23. Laura B, Paolo G (2006) Algal culture. In: Sulzycki J (ed) Algae anatomy, biochemistry and biotechnology. Taylor & Francis, USA, p 222

    Google Scholar 

  24. American Public Health Association (1998) Methods for biomass production. In: Standard methods for the examination of water and wastewater. American Public Health Association, Baltimore, MD, USA

  25. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  26. Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25:1391–1396

    CAS  Google Scholar 

  27. El-Sheekh M, Abomohra AE-F, Hanelt D (2012) Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World J Microbiol Biotechnol. doi:10.1007/s11274-012-1248-2

    Google Scholar 

  28. Vymazal J (1995) Algae and element cycling in wetlands. CRC Press, Florida

    Google Scholar 

  29. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Phys 51:463–499

    Article  CAS  Google Scholar 

  30. El-Sayed AB, Abdel-Maguid AA (2010) Immobilized-microalga Scenedesmus sp. for biological desalination of Red Sea water: II. effect on macronutrients removal. J Am Sci 6:637–643

    Google Scholar 

  31. Ruangsomboon S (2012) Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour Technol 109:261–265

    Article  CAS  Google Scholar 

  32. Gouveia L, Marques AE, da Silva TL, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biot 36:821–826

    Article  CAS  Google Scholar 

  33. Salama E-S, Abou-Shanab RAI, Kim JR, Lee S-H, Kim S-H, Oh S-E, Jeon B-H (2013) Salinity effects on the growth and biochemical properties of Chlamydomonas mexicana GU732420 cultivated in municipal wastewater. Process Biochem (submitted for publication)

  34. Wegmann K (1986) Osmoregulation in eukaryotic algae. FEMS Microbiol Rev 39:37–43

    Article  CAS  Google Scholar 

  35. Hu Q, Sommerfeld M, Jarvis E, Ghirardi ML, Posewitz MC, Seibert M (2008) Microalgal triacyglycerols as feedstocks for biofuel production. Plant J 54:621–639

    Article  CAS  Google Scholar 

  36. Eyster HC, Brown TE, Tanner HA (1958) Mineral requirements for Chlorella Pyrenoidosa under autotrophic and heterotrophic conditions. In: Lamb CA, Bentley OJ, Beattie JM (eds) Trace elements. Academic Press, New York, pp 157–191

    Google Scholar 

  37. Miao X, Wu Q (2007) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  Google Scholar 

  38. Belarbi E-H, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529

    Article  CAS  Google Scholar 

  39. Antolin G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramirez AI (2002) Optimization of biodiesel production by sunflower oil transesterification. Bioresour Technol 83:111–114

    Article  CAS  Google Scholar 

  40. Yeesang C, Cheirsilp B (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol 102:3034–3040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Institute of Energy Research, the Senior Researchers program (The National Research Foundation of Korea, 2010-0026904), the Eco-Innovation project (The Global-Top project) funded by Korea Ministry of Environment, and the Brain Korea-21 (BK-21) and Brain Pool (KFSTS, Grant number: 11-150-152-1600-1658) programs administrated by the Ministry of Education, Science and Technology (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byong-Hun Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salama, ES., Kim, HC., Abou-Shanab, R.A.I. et al. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst Eng 36, 827–833 (2013). https://doi.org/10.1007/s00449-013-0919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0919-1

Keywords

Navigation