Skip to main content
Log in

Influence of cellular differentiation and elicitation on intermediate and late steps of terpenoid indole alkaloid biosynthesis in Catharanthus roseus

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The invaluable antineoplastic bisindole alkaloids of Catharanthus roseus and their precursor, vindoline, are not produced in cell cultures. The intricacies involved in endogenous (cellular differentiation) and exogenous (elicitation) regulation of their biosynthesis need to be dissected out for favorable exploitation. This study aimed at elucidating the effect of Pythium aphanidermatum homogenate and methyl jasmonate (MeJa) on in vitro cultures (of cv. ‘Dhawal’) representing increasing level of differentiation (suspension < callus < shoots) in terms of alkaloid accumulation and transcript abundance of strictosidine β-d-glucosidase (SGD) and acetyl-CoA: 4-O-deacetylvindoline 4-O-acetyl-transferase (DAT) genes, representing intermediate and late steps, respectively, of terpenoid indole alkaloid biosynthesis. Elicitation of suspension cultures caused transcriptional upregulation of SGD and enhanced the accumulation of total alkaloids but did not produce vindoline as DAT transcripts were always found to be absent in suspension-cultured cells. Vindoline was also not detected in unelicited and MeJa-treated callus but appeared upon elicitation with fungal homogenate for 24 h that coincided with maximal DAT transcription. Transcript levels of both genes increased upon elicitation of callus but remained below levels present in the mature plant leaf. Elicitation caused appearance of vindoline in shoots and increased the transcript abundance of both genes beyond levels observed in the mature plant leaf. Differentiation was essential for expression of DAT but not SGD, and vindoline biosynthetic potential increased with it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts RJ, Gisi D, De Carolis E, De Luca V, Baumann TW (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643

    Article  CAS  Google Scholar 

  • Aerts RJ, Schäfer A, Hesse M, Baumann TW, Slusarenko A (1996) Signalling molecules and the synthesis of alkaloids in Catharanthus roseus seedlings. Phytochemistry 42:417–422

    Article  CAS  Google Scholar 

  • Babcock PA, Carew DP (1962) Tissue culture of the Apocynaceae. I. Culture requirements and alkaloid analysis. Lloydia 25:209–213

    CAS  Google Scholar 

  • Blasko G, Cordell GA (1990) Isolation, structure elucidation, and biosynthesis of the bisindole alkaloids of Catharanthus. In: Brossi A, Suffness M (eds) The Alkaloids, Vol. 37. Academic, San Diego, pp 1–76

    Google Scholar 

  • Campos-Tamayo F, Hernández-Domínguez E, Vázquez-Flota F (2008) Vindoline formation in shoot cultures of Catharanthus roseus is synchronously activated with morphogenesis through the last biosynthetic step. Ann Bot 102:409–415

    Article  PubMed  CAS  Google Scholar 

  • Daddona PE, Wright JL, Hutchinson CR (1976) Alkaloid catabolism and mobilization in Catharanthus roseus. Phytochemistry 15:941–945

    Article  CAS  Google Scholar 

  • Datta A, Srivastava PS (1997) Variation in vinblastine production by Catharanthus roseus during in vivo and in vitro differentiation. Phytochemistry 46:135–137

    Article  CAS  Google Scholar 

  • De Luca V, Cutler AJ (1987) Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 85:1099–1102

    Article  PubMed  Google Scholar 

  • Dutta A, Batra J, Pandey-Rai S, Singh D, Kumar S, Sen J (2005) Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don. Planta 220:376–383

    Article  PubMed  CAS  Google Scholar 

  • Eilert U, Constabel F, Kurz WGW (1986) Elicitor-stimulation of monoterpene indole alkaloid formation in suspension cultures of Catharanthus roseus. J Plant Physiol 126:11–22

    CAS  Google Scholar 

  • El-Sayed M, Choi YH, Frédérich M, Roytrakul S, Verpoorte R (2004) Alkaloid accumulation in Catharanthus roseus cell suspension cultures fed with stemmadenine. Biotechnol Lett 26:793–798

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Goodbody A, Misawa M (1987) Alkaloid production in root and shoot cultures of Catharanthus roseus. Planta Med 53:479–482

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, De Luca V (2008) Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 54:763–784

    Article  PubMed  CAS  Google Scholar 

  • Geerlings A, Ibanez MM-L, Memelink J, van der Heijden R, Verpoorte R (2000) Molecular cloning and analysis of strictosidine β-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056

    Article  PubMed  CAS  Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393

    Article  PubMed  CAS  Google Scholar 

  • Gupta MM, Singh DV, Tripathi AK, Pandey R, Verma RK, Singh S, Shasany AK, Khanuja SPS (2005) Simultaneous determination of vincristine, vinblastine, catharanthine and vindoline in leaves of Catharanthus roseus by high performance liquid chromatography. J Chromatogr Sci 43:450–453

    PubMed  CAS  Google Scholar 

  • Harris AL, Nylund HB, Carew DP (1964) Tissue culture studies of certain members of the Apocynaceae. Lloydia 27:322–327

    CAS  Google Scholar 

  • Hernandez-Dominguez E, Campos-Tamayo F, Vazquez-Flota F (2004) Vindoline synthesis in in vitro shoot cultures of Catharanthus roseus. Biotechnol Lett 26:671–674

    Article  PubMed  CAS  Google Scholar 

  • Hirata K, Yamanaka A, Kurano N, Miyamoto K, Miura Y (1987) Production of indole alkaloids in multiple shoot cultures of Catharanthus roseus (L.) G. Don. Agric Biol Chem 51:1311–1317

    CAS  Google Scholar 

  • Krueger RJ, Carew DP, Lui JHC, Staba EJ (1982) Initiation, maintenance and alkaloid content of Catharanthus roseus leaf organ cultures. Planta Med 45:56–57

    Article  PubMed  CAS  Google Scholar 

  • Kuboyama T, Yokoshima S, Tokuyama H, Fukuyama T (2004) Stereocontrolled total synthesis of (+)-vincristine. Proc Natl Acad Sci USA 101:11966–11970

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni RN, Baskaran K, Chandrashekara RS, Khanuja SPS, Darokar MP, Shasany AK, Uniyal GC, Gupta MM, Kumar S (2003) ‘Dhawal’, a high alkaloid producing periwinkle plant. US Patent 6,548,746

  • Leonard E, Runguphan W, O’Connor S, Prather KJ (2009) Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nat Chem Biol 5:292–300

    Article  PubMed  CAS  Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORCAnisation of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  PubMed  CAS  Google Scholar 

  • Menke FLH, Champion A, Kijne JW, Memelink J (1999a) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463

    Article  PubMed  CAS  Google Scholar 

  • Menke FLH, Parchmann S, Mueller MJ, Kijne JW, Memelink J (1999b) Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol 119:1289–1296

    Article  PubMed  CAS  Google Scholar 

  • Mersey BG, Cutler AJ (1986) Differential distribution of specific indole alkaloids in leaves of Catharanthus roseus. Can J Bot 64:1039–1045

    Article  CAS  Google Scholar 

  • Miura Y, Hirata K, Kurano N, Miyamoto K, Uchida K (1988) Formation of vinblastine in multiple shoot culture of Catharanthus roseus. Planta Med 54:18–20

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20:524–542

    Article  PubMed  CAS  Google Scholar 

  • Neuss N (1980) The spectrum of biological activities of indole alkaloids. In: Phillipson JD, Zenk MH (eds) Indole and biogenetically related alkaloids. Academic, London, pp 293–313

    Google Scholar 

  • Pasquali G, Porto DD, Fett-Neto AG (2006) Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. J Biosci Bioeng 101:287–296

    Article  PubMed  CAS  Google Scholar 

  • Patterson BD, Carew DP (1969) Growth and alkaloid formation in Catharanthus roseus tissue cultures. Lloydia 32:131–140

    PubMed  CAS  Google Scholar 

  • Peebles CA, Hughes EH, Shanks JV, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Met Eng 11:76–86

    Article  CAS  Google Scholar 

  • Potier P (1980) Is the modified Polonovski reaction biomimetic? In: Phillipson JD, Zenk MH (eds) Indole and biogenetically related alkaloids. Academic, London, pp 159–169

    Google Scholar 

  • Ramani S, Jayabaskaran C (2008) Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. J Mol Signal 3:9

    Article  PubMed  CAS  Google Scholar 

  • Reda F (1978) Distribution and accumulation of alkaloids in Catharanthus roseus G. Don during development. Pharmazie 33:233–234

    PubMed  CAS  Google Scholar 

  • Rijhwani SK, Shanks JV (1998) Effect of elicitor dosage and exposure time on biosynthesis of indole alkaloids by Catharanthus roseus hairy root cultures. Biotechnol Prog 14:442–449

    Article  PubMed  CAS  Google Scholar 

  • Shukla AK (2005) Molecular studies on biosynthesis of shoot alkaloids in Catharanthus roseus (L.) G. Don. PhD thesis, Department of Biochemistry, University of Lucknow, India

  • Shukla YN, Rani A, Kumar S (1997) Effect of temperature and pH on the extraction of total alkaloids from Catharanthus roseus leaves. J Med Aromat Plant Sci 19:430–431

    CAS  Google Scholar 

  • Shukla AK, Shasany AK, Khanuja SPS (2005) Isolation of poly (A)+ mRNA for downstream reactions from some medicinal and aromatic plants. Indian J Exp Biol 43:197–201

    PubMed  CAS  Google Scholar 

  • Shukla AK, Shasany AK, Gupta MM, Khanuja SPS (2006) Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles. J Exp Bot 57:3921–3932

    Article  PubMed  CAS  Google Scholar 

  • Skrypina NA, Timofeeva AV, Khaspekov GL, Savochkina LP, Beabealashvilli RS (2003) Total RNA suitable for molecular biology analysis. J Biotechnol 105:1–9

    Article  PubMed  CAS  Google Scholar 

  • Svoboda GH, Blake DA (1975) The phytochemistry and pharmacology of Catharanthus roseus (L) G. Don. In: Taylor WI, Farnsworth NR (eds) The Catharanthus Alkaloids. Marcel Dekker, New York, pp 45–83

    Google Scholar 

  • Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53

    Article  PubMed  Google Scholar 

  • Van der Fits L, Zhang H, Menke FLH, Deneka M, Memelink J (2000) A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a jasmonate-independent signal transduction pathway. Plant Mol Biol 44:675–685

    Article  PubMed  Google Scholar 

  • Van der Heijden R, Verpoorte R, Ten Hoopen HJG (1989) Cell and tissue cultures of Catharanthus roseus (L) G Don: a literature survey. Plant Cell Tiss Organ Cult 18:231–280

    Article  Google Scholar 

  • Van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  Google Scholar 

  • Vazquez-Flota F, De Luca V, Carrillo-Pech M, Canto-Flick A, de Lourdes Miranda-Ham M (2002) Vindoline biosynthesis is transcriptionally blocked in Catharanthus roseus cell suspension cultures. Mol Biotechnol 22:1–8

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Flota F, Carrillo-Pech M, Minero-Garcia Y, Miranda-Ham MDL (2004) Alkaloid metabolism in wounded Catharanthus roseus seedlings. Plant Physiol Biochem 42:623–628

    Article  PubMed  CAS  Google Scholar 

  • Vázquez-Flota F, Hernández-Domínguez E, de Lourdes Miranda-Ham M, Monforte-González M (2009) A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnol Lett 31:591–595

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R, Van der Heijden R, Moreno PRH (1997) Biosynthesis of terpenoid indole alkaloids in Catharanthus roseus cells. In: Cordell GA (ed) The Alkaloids, Vol. 49. Academic, San Diego, pp 221–299

    Chapter  Google Scholar 

  • Vom Endt D, e Silva MS, Kijne JW, Pasquali G, Memelink J (2007) Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-hook DNA-binding proteins. Plant Physiol 144:1680–1689

    Article  PubMed  CAS  Google Scholar 

  • Yokoshima S, Ueda T, Kobayashi S, Sato A, Kuboyama T, Tokuyama H, Fukuyama T (2002) Stereocontrolled total synthesis of (+)-vinblastine. J Am Chem Soc 124:2137–2139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Council of Scientific and Industrial Research (CSIR), India, and the Department of Biotechnology, India, for the financial support extended by them. We also thank Dr. R.N. Kulkarni, Senior Scientist, CIMAP Resource Centre, Bangalore, for providing cv. ‘Dhawal’ seeds.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman P. S. Khanuja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, A.K., Shasany, A.K., Verma, R.K. et al. Influence of cellular differentiation and elicitation on intermediate and late steps of terpenoid indole alkaloid biosynthesis in Catharanthus roseus . Protoplasma 242, 35–47 (2010). https://doi.org/10.1007/s00709-010-0120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0120-1

Keywords

Navigation