Skip to main content
Log in

Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Precursor feeding experiments have shown that the terpene moiety biosynthesis is the most rate-limiting step of terpenoid indole alkaloids (TIA) produced by Catharanthus roseus suspension cells. The biosynthesis of TIA terpene moiety is strictly regulated by hormones: auxin inhibits, jasmonate stimulates and cytokinin and ethylene enhance their biosynthesis. Biochemical analyses coupled to molecular approaches have outlined a regulatory cross-talk between two metabolite pathways leading to the biosynthesis of terpene precursors. Terpenes derivatives produced through the mevalonic acid (MVA) pathway regulate the activity of the 2-C-methyl-d-erythritol 4-phosphate (MEP) non-mevalonate pathway producing the precursor of the TIA terpene moiety. This cross-talk involves regulatory prenylated proteins and acts on the regulation of the expression of early steps of monoterpenoid biosynthesis (ESMB) genes. The expression of the genes involved in the TIA terpene moiety biosynthesis is regulated in part by a general TIA transcription factor, ORCA3, and other unidentified transcription factors. This review sums up the essential information obtained at the metabolic, physiological, biochemical and molecular levels of regulation of TIA terpene moiety biosynthesis in C. roseus. We propose a synthetic scheme of the general regulatory network emerging from these experimental data, and discuss the related hypothesis and prospect in elucidating other key events involved in the regulation of TIA terpene moiety biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CaaX-PTases:

CaaX-prenyltransferases

2,4-D:

2,4-Dichlorophenoxyacetic acid

DMAPP:

Dimethylallyl diphosphate

ESMB genes:

Early steps of monoterpenoid biosynthesis genes

IPP:

Isopentenyl diphosphate

MeJa:

Methyl Jasmonate

MEP:

2-C-methyl-d-erythritol 4-phosphate

MVA:

Mevalonic acid

ORCA3:

Octadecanoid-derivative Responsive Catharanthus AP2-domain protein 3

PFT:

Protein farnesyltransferase

PGGT-I:

Type I protein geranylgeranyltransferase

RabGGTase:

Rab geranylgeranyltransferase

TIA:

Terpenoid indole alkaloids

References

  • Aapro MS, Harper P, Johnson SA, Vermorken JB (2001) Developments in cytotoxic chemotherapy: advances in treatment utilising vinorelbine. Crit Rev Oncol Hematol 40:251–63

    PubMed  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    Article  PubMed  CAS  Google Scholar 

  • Arvy MP, Imbault N, Naudascher F, Thiersault M, Doireau P (1994) 2,4-D and alkaloid accumulation in periwinkle cell suspensions. Biochimie 76:410–416

    Article  PubMed  CAS  Google Scholar 

  • Bloch K, Chaykin S, Phillips AH, De Waard A (1959) Mevalonic acid pyrophosphate and isopentenylpyrophosphate. J Biol Chem 234:2595–2604

    PubMed  CAS  Google Scholar 

  • Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38:131–141

    Article  PubMed  CAS  Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JH, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    Article  PubMed  CAS  Google Scholar 

  • Carew DP, Krueger RJ (1977) Catharanthus roseus tissue culture: the effects of medium modifications on growth and alkaloid production. Lloydia 40:326–336

    PubMed  CAS  Google Scholar 

  • Chahed K, Oudin A, Guivarc’h N, Hamdi S, Chénieux JC, Rideau M, Clastre M (2000) 1-Deoxy-D-xylulose 5-phosphate synthase from perwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol Biochem 38:559–566

    Article  CAS  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220

    Article  PubMed  CAS  Google Scholar 

  • Contin A, Heijden R, Lefeber AWM, Verpoort R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 437:413–416

    Article  Google Scholar 

  • Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc’h N (2005) Characterisation of CaaX-prenyltransferases in Catharanthus roseus: relationships with the expression of genes involved in the early stages of monoterpenoid biosynthetic pathway. Plant Sci 168:1097–1107

    Article  CAS  Google Scholar 

  • Courdavault V, Thiersault M, Courtois M, Gantet P, Oudin A, Doireau P, St-Pierre B, Giglioli-Guivarc’h N (2005) CaaX-prenyltransferases are essential for expression of genes involved in the early stages of monoterpenoid biosynthetic pathway in Catharanthus roseus cells. Plant Mol Biol 57:855–870

    Article  PubMed  CAS  Google Scholar 

  • Décendit A, Liu D, Ouelhazi L, Doireau P, Mérillon J, Rideau M (1992) Cytokinin-enhanced accumulation of indole alkaloids in Catharanthus roseus cell cultures – the factor affecting the cytokinin response. Plant Cell Rep 11:400–403

    Article  Google Scholar 

  • Doller G, Alfermann AW, Reinhard E (1976) Production of indole alkaloids in tissue cultures of Catharanthus roseus. Planta Med 30:14–20

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–84

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, DiCosmo F (1991) Secondary metabolite biosynthesis in cultured cells of Catharanthus roseus (L.) G. Don immobilized by adhesion to glass fibres. Appl Microbiol Biotechnol 35:382–392

    Article  PubMed  CAS  Google Scholar 

  • Gadbut AP, Wu L, Tang D, Papageorge A, Watson JA, Galper JB (1997) Induction of the cholesterol metabolic pathway regulates the farnesylation of RAS in embryonic chick heart cells: a new role for ras in regulating the expression of muscarinic receptors and G proteins. EMBO J 16:7250–7260

    Article  PubMed  CAS  Google Scholar 

  • Gantet P, Imbault N, Thiersault M, Doireau P (1998) Necessity of a functionnal octadecanoic pathway for indole alkaloid synthesis by Catharanthus roseus cell suspension cultured in an auxin-starved medium. Plant Cell Physiol 39:220–225

    CAS  Google Scholar 

  • Gantet P, Memelink J (2002) Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol Sci 23:563–569

    Article  PubMed  CAS  Google Scholar 

  • Goddijn OJ, Pennings EJ, van der Helm P, Schilperoort RA, Verpoorte R, Hoge JH (1995) Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgenic Res 4:315–323

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    Article  PubMed  CAS  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86:718–727

    Article  PubMed  CAS  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276

    Article  PubMed  CAS  Google Scholar 

  • Imbault N, Thiersault M, Dupéron P, Benabdelmouna A, Doireau P (1996) Pravastatine: A tool for investigating the availability of mevalonate metabolites for primary and secondary metabolism in Catharanthus roseus cell suspensions. Physiol Plant 98:803–809

    Article  CAS  Google Scholar 

  • Irmler S, Schroder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schroder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804

    Article  PubMed  CAS  Google Scholar 

  • Kruczynsky A, Hill BT (2001) Vinflunine, the latest Vinca alkaloid in clinical development. A review of its preclinical anticancer properties. Crit Rev Oncol Hematol 40:159–173

    Google Scholar 

  • Levy HR, Popjak G (1960) Studies on the biosynthesis of cholesterol. 10. Mevalonic kinase from liver. Biochem J 75:417–428

    PubMed  CAS  Google Scholar 

  • Li J, Last RL (1996) The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol 110:51–59

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rhomer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a so far unexpected novel pathway. FEBS Lett 400:271–274

    Article  PubMed  CAS  Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  PubMed  CAS  Google Scholar 

  • Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463

    Article  PubMed  CAS  Google Scholar 

  • Mérillon J, Doireau P, Guillot A, Chénieux JC, Rideau M (1986) Indole alkaloid accumulation and tryptophane decarboxylase activity in Catharanthus roseus cells cultured in three different media. Plant Cell Rep 5:23–26

    Article  Google Scholar 

  • Moreno PR, Schlatmann JE, van der Heijden R, van Gulik WM, ten Hoopen HJ, Verpoorte R, Heijnen JJ (1993) Induction of ajmalicine formation and related enzyme activities in Catharanthus roseus cells: effect of inoculum density. Appl Microbiol Biotechnol 39:42–47

    PubMed  CAS  Google Scholar 

  • Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79:137–145

    Article  PubMed  CAS  Google Scholar 

  • Naudascher F, Doireau P, Guillot A, Viel C, Thiersault M (1989) Time-course studies on the use of secologanin by Catharanthus roseus cells cultured in vitro. J Plant Physiol 134:608–612

    CAS  Google Scholar 

  • Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Crèche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathways in Catharanthus roseus suspension cells. Planta Med 71:572–574

    Article  PubMed  CAS  Google Scholar 

  • Pasquali G, Goddijn OJ, de Waal A, Verpoorte R, Schilperoort RA, Hoge JH, Memelink J (1992) Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 18:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Pauw B, Hilliou FA, Martin VS, Chatel G, de Wolf CJ, Champion A, Pre M, van Duijn B, Kijne JW, van der Fits L, Memelink J (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279:52940–52948

    Article  PubMed  CAS  Google Scholar 

  • Pennings EJM, Groen BW, Duine JA, Verpoorte R (1989) Tryptophan decarboxylase from Catharanthus roseus is a pyridoxoquinoprotein. FEBS Lett 255:97–100

    Article  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Yalovsky S, Zik M, Fromm H, Gruissem W (1999) The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J 18:1996–2007

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–9

    Article  PubMed  CAS  Google Scholar 

  • Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F, Eisenreich W (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2:3–16

    Article  CAS  Google Scholar 

  • Seabra MC, Reiss Y, Casey PJ, Brown MS, Golstein JL (1991) Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell 65:429–434

    Article  PubMed  CAS  Google Scholar 

  • Sibéril Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Modular structure and activation mechanisms. Eur J Biochem 268:5655–5666

    Google Scholar 

  • Sinensky M (2000a) Functional aspects of polyisoprenoid protein substituents:roles in protein-protein interaction and trafficking. Biochim Biophys Acta 1529:203–209

    CAS  Google Scholar 

  • Sinensky M (2000b) Recent advances in the study of prenylated proteins. Biochim Biophys Acta 1484:93–106

    CAS  Google Scholar 

  • Stamatakis K, Cernuda-Morollon E, Hernandez-Perera O, Perez-Sala D (2002) Isoprenylation of RhoB is necessary for its degradation. A novel determinant in the complex regulation of RhoB expression by the mevalonate pathway. J Biol Chem 277:49389–49396

    CAS  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • van der Fits L, Zhang H, Menke FL, Deneka M, Memelink J (2000) A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway. Plant Mol Biol 44:675–685

    Article  PubMed  Google Scholar 

  • Veau B, Courtois M, Oudin A, Chénieux JC, Rideau M, Clastre M (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim Biophys Acta 1517:159–163

    PubMed  CAS  Google Scholar 

  • Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators?. Phytochemistry 61:107–114

    Article  PubMed  CAS  Google Scholar 

  • Whitmer S, Canel C, Hallard D, Goncalves C, Verpoorte R (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol 116:853–857

    Article  PubMed  CAS  Google Scholar 

  • Whitmer S, van der Heijden R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203

    Article  PubMed  CAS  Google Scholar 

  • Yahia A, Kevers C, Gaspar T, Chénieux JC, Rideau M, Crèche J (1998) Cytokinins and ethylene stimulate indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus by two distinct mechanisms. Plant Sci 133:9–15

    Article  CAS  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  PubMed  CAS  Google Scholar 

  • Zenk MH, El-Shagi H, Arens H, Stöckigt J, Weiler EW, Dues B (1977) Formation of indole alkaloids serpentine and ajmalicine in cell suspension cultures of C roseus. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its biotechnological applications. Springer-Verlag, Berlin, pp 27–44

    Google Scholar 

Download references

Acknowledgements

This work is supported financially by the Région Centre and the Ligue Nationale Contre le Cancer (Comité d’Indre et Loire). Authors are grateful to Dr Pratap Pati, Guru Nanak Dev University, India for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Gantet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedhili, S., Courdavault, V., Giglioli-Guivarc’h, N. et al. Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochem Rev 6, 341–351 (2007). https://doi.org/10.1007/s11101-006-9021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9021-5

Keywords

Navigation