Skip to main content
Log in

Catharanthus biosynthetic enzymes: the road ahead

  • Review Article
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Alkaloids are one of the most diverse groups of secondary metabolites found in living organisms. The most economically important alkaloids are the bisindole vinblastine, and vincristine. Unraveling the complexity of the genetic, catalytic and transport processes of monoterpene indole alkaloids biosynthesis is one of the most stimulating intellectual challenges in the plant secondary metabolism field. More than 50 metabolic steps are required to synthesize the most important alkaloids in Catharanthus roseus. Until now about only 20 of the 50 enzymes required for their biosynthesis have been determined and characterized. Hence, there are still a number of important enzymes that need to be characterized, beginning with the isolation and cloning of genes. It is also of fundamental importance to elucidate the regulatory aspects of their biosynthesis, both at the cellular and the molecular level, in order to address the question of their function in the plants that are producing them. In this review, we present an analysis of the state of the art related to the biosynthesis of the monoterpene indole alkaloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The first time that an enzyme in named, the systematic name and the Enzyme Commission Number (EC) assigned by IUBMB (www.chem.qmul.ac.uk/iubmb/enzyme/) is given. The common name is given in parenthesis; after the first time, and in all figure legends, the common name is used.

Abbreviations

AVLBS:

α-3′, 4′-Anhydrovinblastine synthase

CaaX-PTases:

CaaX-prenyltransferases

CPR:

Cytochrome P450 reductase

DMAPP:

Dimethylallyl diphosphate

GPP:

Geranyl diphosphate

IPP:

Isopentenyl pyrophosphate

MeJa:

Methyl jasmonate

MEP:

2-C-methylerythritol 4-phosphate

PFT:

Protein farnesyltransferas

PGGT-I:

Type I protein geranylgeranyltransferase

STR:

Strictosidine synthase

TDC:

Tryptophan decarboxylase

TIAs:

Terpenoid indole-alkaloids

References

  • Adam KP, Zapp J (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry 48:953–959

    CAS  Google Scholar 

  • Aerts RJ, De Luca V (1992) Phytochrome is involved in the light-regulation of vindoline biosynthesis in Catharanthus. Plant Physiol 100:1029–1032

    PubMed  CAS  Google Scholar 

  • Aerts RJ, Gisi D, De Carolis E et al (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloid in Catharanthus and Cinchona seedling. Plant J 5:635–643

    CAS  Google Scholar 

  • Aerts RJ, Van der Leer T, Van der Heijden R et al (1990) Developmental regulation of alkaloid production in Cinchona seedlings. J Plant Physiol 136:86–91

    CAS  Google Scholar 

  • Agranoff BW, Eggerer H, Henning U et al (1960) Biosynthesis of terpenes. VII. Isopentenyl pyrophosphate isomerase. J Biol Chem 235:326–332

    PubMed  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C et al (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci (USA) 94:10600–10605

    CAS  Google Scholar 

  • Ayora-Talavera T, Chappell J, Lozoya-Gloria E et al (2002) Overexpression in Catharanthus roseus hairy roots of a trucated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl Biochem Biotechnol 97:135–145

    PubMed  CAS  Google Scholar 

  • Bach TJ (1995) Some new aspects of isoprenoid biosynthesis in plants. A review. Lipids 30:191–202

    PubMed  CAS  Google Scholar 

  • Bach TJ, Raudot V, Vollack K-U et al (1994) Further studies on the enzymatic conversion of acetyl-coenzyme a into 3-hydroxy-3-methylglutaryl-coenzyme A in radish. Plant Physiol Biochem 32: 775–783

    CAS  Google Scholar 

  • Balsevich J, Bishop G (1989) Distribution of catharanthine, vindoline, 3′-4′-anhydrovinblastine in the aerial parts of some Catharanthus roseus plants and the significance thereof in relation to alkaloid production in cultured cells. In: Kurz WGW (ed) Primary and secondary metabolism of plant cell cultures II. Springer-Verlag, Berlin, pp 149–153

    Google Scholar 

  • Balsevich J, De Luca V, Kurz WGW (1986) Altered alkaloid pattern in dark grown seedlings of Catharanthus roseus. The isolation and characterization of 4-desacetoxyvindoline+: a novel indole alkaloid and proposed precursor of vindoline. Heterocycles 24:2415–2421

    CAS  Google Scholar 

  • Banthorpe DV, Bucknall GA, Doonan HJ et al (1976) Biosynthesis of geraniol and nerol in cell-free extracts of Tanacetum vulgare. Phytochemistry 15:91–100

    CAS  Google Scholar 

  • Barleben L, Ma X, Koepke J et al (2005) Expression, purification, crystallization and preliminary X-ray analysis of strictosidine glucosidase, an enzyme initiating biosynthetic pathways to a unique diversity of indole alkaloid skeletons. Biochim Biophys Acta Prot Prot 1747:89–92

    CAS  Google Scholar 

  • Bayer A, Ma X, Stockigt J (2004) Acetyltransfer in natural product biosynthesis—functional cloning and molecular analysis of vinorine synthase. Bioorg Med Chem 12:2787–2795

    PubMed  CAS  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (1995) Biochemistry. W.H. Freeman & Company, New York

    Google Scholar 

  • Bloch K, Chaykin S, Phillips AH et al (1959) Mevalonic acid pyrophosphate and isopentenylpyrophosphate. J Biol Chem 234:2595–2604

    PubMed  CAS  Google Scholar 

  • Blom TJM, Sierra M, Van Vliet TB et al (1991) Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine. Planta 183:170–177

    CAS  Google Scholar 

  • Burlat V, Oudin A, Courtois M et al (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprene-derived primary metabolites. Plant J 38:131–141

    PubMed  CAS  Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S et al (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    PubMed  CAS  Google Scholar 

  • Canto-Canché B, Loyola-Vargas VM (2000) Non-coordinated response of cytochrome P450-dependent geraniol 10-hydroxylase and NADPH: Cyt C (P-450) reductase in Catharanthus roseus hairy roots under different conditions. Phyton 66:183–190

    Google Scholar 

  • Canto-Canché B, Loyola-Vargas VM (2001) Multiple forms of NADPH-cytochrome P450 oxidoreductase in the Madagascar periwinkle Catharanthus roseus. In Vitro Cell Dev Biol Plant 37:622–628

    Google Scholar 

  • Canto-Canché B, Meijer AH, Collu G et al (2005) Characterization of a polyclonal antiserum against the monoterpene monooxygenase, geraniol 10-hydroxylase from Catharanthus roseus. J Plant Physiol 162:393–402

    PubMed  Google Scholar 

  • Chappell J (1995a) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol 46:521–547

    CAS  Google Scholar 

  • Chappell J (1995b) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    PubMed  CAS  Google Scholar 

  • Chappell J, Wolf F, Proulx J et al (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343

    PubMed  CAS  Google Scholar 

  • Chatel G, Montiel G, Pré M et al (2003) CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter. J Exp Bot 54:2587–2588

    PubMed  CAS  Google Scholar 

  • Collu G, Alonso-García A, Van der Heijden R et al (2002) Activity of the cytochrome P450 enzyme geraniol 10-hydroxylase and alkaloid production in plant cell cultures. Plant Sci 162:165–172

    CAS  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman A et al (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220

    PubMed  CAS  Google Scholar 

  • Constabel F, Gaudet-LaPrairie P, Kurz WGW et al (1982) Alkaloid production in Catharanthus roseus cell cultures. XII. Biosynthetic capacity of callus from original explants and regenerated shoots. Plant Cell Rep 1:139–142

    Google Scholar 

  • Contin A, Van der Heijden R, Lefeber AW et al (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 434:413–416

    PubMed  CAS  Google Scholar 

  • Cordell GA (1999) The monoterpene alkaloids. In: Cordell GA (ed) The alkaloids. Academic Press, San Diego, pp 261–376

    Google Scholar 

  • Courdavault V, Burlat V, St-Pierre B et al (2005) Characterisation of CaaX-prenyltransferases in Catharanthus roseus: relationships with the expression of genes involved in the early stages of monoterpenoid biosynthetic pathway. Plant Sci 168:1097–1107

    CAS  Google Scholar 

  • Datta A, Srivastava PS (1997) Variation in vinblastine production by Catharanthus roseus during in vivo and in vitro differentiation. Phytochemistry 46:135–137

    CAS  Google Scholar 

  • De Carolis E, Chan F, Balsevich J et al (1990) Isolation and characterization of a 2-oxoglutarate dependent dioxygenase involved in the second-to-last step in vindoline biosynthesis. Plant Physiol 94:1323–1329

    PubMed  Google Scholar 

  • De Carolis E, De Luca V (1993) Purification, characterization, and kinetic analysis of a 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis from Catharanthus roseus. J Biol Chem 268:5504–5511

    PubMed  Google Scholar 

  • De Carolis E, De Luca V (1994a) 2-oxoglutarate-dependent dioxygenase and related enzymes: biochemical characterization. Phytochemistry 36:1093–1107

    PubMed  Google Scholar 

  • De Carolis E, De Luca V (1994b) A novel 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis: characterization, purification and kinetic properties. Plant Cell Tiss Org Cult 38:281–287

    CAS  Google Scholar 

  • De Luca V (1993) Enzymology of indole alkaloid biosynthesis. In: Lea PJ (ed) Methods in plant biochemistry, vol 9. Academic Press Limited, London, pp 345–368

    Google Scholar 

  • De Luca V, Aerts RJ, Chavadej S et al (1992) The biosynthesis of monoterpenoid indole alkaloids in Catharanthus roseus. In: Singh BK, Flores HE, Shannon JC (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiology, Rockville, pp 275–284

    Google Scholar 

  • De Luca V, Balsevich J, Kurz WGW (1985) Acetyl coenzyme A: deacetylvindoline O-acetyltransferase, a novel enzyme from Catharanthus. J Plant Physiol 121:417–428

    Google Scholar 

  • De Luca V, Balsevich J, Tyler RT et al (1986) Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J Plant Physiol 125:147–156

    Google Scholar 

  • De Luca V, Balsevich J, Tyler RT et al (1987) Characterization of a novel N-methyltransferase (NMT) from Catharanthus roseus plants. Plant Cell Rep 6:458–461

    Google Scholar 

  • De Luca V, Brisson N, Kurz WGW (1989) Regulation of vindoline biosynthesis in Catharanthus roseus: molecular cloning of the first and the last steps in biosynthesis. In: Kurz WGW (ed) Primary and secondary metabolism of plants cell cultures II. Springer Verlag, Berlin, pp 154–161

    Google Scholar 

  • De Luca V, Cutler AJ (1987) Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 85:1099–1102

    PubMed  Google Scholar 

  • De Luca V, Fernández AJ, Campbell D et al (1988) Developmental regulation of enzymes of indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 86:447–450

    PubMed  Google Scholar 

  • De Luca V, Laflamme P (2001) The expanding universe of alkaloid biosynthesis. Curr Opi Plant Biol 4:225–233

    Google Scholar 

  • De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    PubMed  Google Scholar 

  • De Luca V, St-Pierre B, Vázquez-Flota F et al (1998) Indole alkaloid biosynthesis in Catharanthus roseus: the establishment of a model system. In: Lo Chiavo F, Last RL, Morelli G et al (eds) Cellular integration of signalling pathways in plant development. Springer-Verlag, Berlin, pp 171–187

    Google Scholar 

  • De Waal A, Meijer AH, Verpoorte R (1995) Strictosidine synthase from Catharanthus roseus: purification and characterization of multiple forms. Biochem J 306:571–580

    PubMed  Google Scholar 

  • Dethier M, De Luca V (1993) Partial purification of an N-methyltransferase involved in vindoline biosynthesis in Catharanthus roseus. Phytochemistry 32:673–678

    CAS  Google Scholar 

  • Deus-Neumann B, Stöckigt J, Zenk MH (1987) Radioimmunoassay for the quantitative determination of catharanthine. Planta Med 53:184–188

    PubMed  CAS  Google Scholar 

  • Dogru E, Warzecha H, Seibel F et al (2000) The gene encoding polyneuride aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of the α/b hydroxylase super family. Eur J Biochem 267:1397–1406

    PubMed  CAS  Google Scholar 

  • Doireau P, Mérillon JM, Guillot A et al (1987) Time-course studies on indole alkaloid accumulation and changes in tryptophan decarboxylase and strictosidine synthase activities: a comparison in three strains of Catharanthus roseus cells. Planta Med 53:364–367

    PubMed  CAS  Google Scholar 

  • Donaldson RP, Luster DG (1991) Multiple forms of plant cytochromes P-450. Plant Physiol 96:669–674

    PubMed  CAS  Google Scholar 

  • Dörnenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb Technol 17:674–684

    Google Scholar 

  • Drapeau D, Blanch HW, Wilke CR (1987) Ajmalicine, serpentine, and catharanthine accumulation in Catharanthus roseus bioreactor cultures. Planta Med 53:373–376

    PubMed  CAS  Google Scholar 

  • Durr IF, Rudney H (1960) The reduction of β-hydroxy-β-methylglutaryl coenzyme A to mevalonic acid. J Biol Chem 235:2572–2578

    PubMed  CAS  Google Scholar 

  • Eilert U, De Luca V, Constabel F et al (1987a) Elicitor-mediated induction of tryptophan decarboxylase and strictosidine synthase activities in cell suspension cultures of Catharanthus roseus. Arch Biochem Biophys 254:491–497

    PubMed  CAS  Google Scholar 

  • Eilert U, Kurz WGW, Constabel F (1987b) Alkaloid accumulation in plant cell cultures upon treatment with elicitors. In: Green CE, Somers DA, Hackett WP et al (eds) Plant biology, vol 3. Plant tissue and cell culture. Alan R. Liss, Co., New York, pp 213–219

    Google Scholar 

  • El-Sayed M, Choi YH, Frédérich M et al (2004) Alkaloid accumulation in Catharanthus roseus cell suspension cultures fed with stemmadenine. Biotechnol Lett 26:793–798

    PubMed  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2005) Methyljasmonate accelerates catabolism of monoterpenoid indole alkaloids in Catharanthus roseus during leaf processing. Fitoterapia 76:83–90

    PubMed  CAS  Google Scholar 

  • Endo T, Goodbody AE, Misawa M (1987) Alkaloid production in root and shoot cultures of Catharanthus roseus. Planta Med 53:479–482

    PubMed  CAS  Google Scholar 

  • Endo T, Goodbody AE, Vukovic J et al (1988) Enzymes from Catharanthus roseus cell suspension cultures that couple vindoline and catharanthine to form 3′,4′-anhydrovinblastine. Phytochemistry 27:2147–2149

    CAS  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    PubMed  CAS  Google Scholar 

  • Facchini PJ, De Luca V (1995) Phloem-specific expression of tyrosine/dopa decarboxylase genes and the biosynthesis of isoquinoline alkaloids in opium poppy. Plant Cell 7:1811–1821

    PubMed  CAS  Google Scholar 

  • Facchini PJ, DiCosmo F (1991) Secondary metabolite biosynthesis in cultured cells of Catharanthus roseus (L.) G. Don immobilized by adhesion to glass fibres. Appl Microbiol Biotechnol 35:382–392

    PubMed  CAS  Google Scholar 

  • Fahn W, Gundlach H, Deus-Neumann B et al (1985a) Late enzymes of vindoline biosynthesis. acetyl-CoA:17-O-acetyl-transferase. Plant Cell Rep 4:333–336

    CAS  Google Scholar 

  • Fahn W, LauBermair E, Deus-Neumann B et al (1985b) Late enzymes of vindoline biosynthesis. S-adenosyl-l-methionine:11-O-demethyl-17-O-deacetylvindoline 11-O-methyltransferase and unspecific acetylesterase. Plant Cell Rep 4:337–340

    CAS  Google Scholar 

  • Fahn W, Stöckigt J (1990) Purification of acetyl-CoA: 17-O-deacetylvindoline 17-O-acetyltransferase from Catharanthus roseus leaves. Plant Cell Rep 8:613–616

    CAS  Google Scholar 

  • Falkenhagen H, Stöckigt J (1995) Enzymatic biosynthesis of vomilenine, a key intermediate of the ajmaline pathway, catalyzed by a novel cytochrome P450-dependent enzyme from plant cell cultures of Rauwolfia serpentina. Z Naturforsch [C] 50:45–53

    CAS  Google Scholar 

  • Felix H, Brodelius P, Mosbach K (1981) Enzyme activities of the primary and secondary metabolism of simultaneously permeabilized and immobilized plant cells. Anal Biochem 116:462–470

    PubMed  CAS  Google Scholar 

  • Fernandez JA, Kurz WGW, De Luca V (1989) Conformation-dependent inactivation of tryptophan decarboxylase from Catharanthus roseus. Biochem Cell Biol 67:730–734

    Article  CAS  Google Scholar 

  • Flores HE, Filner P (1985) Metabolic relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism in plant cell cultures. Springer-Verlag, Heidelberg, pp 174–186

    Google Scholar 

  • Geerlings A, Ibañez MML, Memelink J et al (2000) Molecular cloning and analysis of strictosidine β-d-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056

    PubMed  CAS  Google Scholar 

  • Gershenzon J, Croteau R (1990) Regulation of monoterpene biosynthesis in higher plants. Rec Advan Phytochem 24:99–160

    CAS  Google Scholar 

  • Goddijn OJM, De Kam RJ, Zanetti A et al (1992) Auxin rapidly down-regulates transcription of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol Biol 18:1113–1120

    PubMed  CAS  Google Scholar 

  • Goddijn OJM, Van der Duyn Schouten PM, Schilperoort RA et al (1993) A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol Biol 22:907–912

    PubMed  CAS  Google Scholar 

  • Godoy-Hernández G, Loyola-Vargas VM (1991) Effect of fungal homogenate, enzyme inhibitors and osmotic stress on alkaloid content of Catharanthus roseus cell suspension cultures. Plant Cell Rep 10:537–540

    Google Scholar 

  • Godoy-Hernández G, Loyola-Vargas VM (1997) Effect of acetylsalicylic acid on secondary metabolism of Catharanthus roseus tumor suspension culture. Plant Cell Rep 16:287–290

    Google Scholar 

  • Godoy-Hernández GC, Vázquez-Flota FA, Loyola-Vargas VM (2000) The exposure to trans-cinnamic acid of osmotically stressed Catharanthus roseus cells cultured in a 14-L bioreactor increases alkaloid accumulation. Biotechnol Lett 22:921–925

    Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    PubMed  CAS  Google Scholar 

  • Gray JC (1987) Control of isoprenoid biosynthesis in higher plants. In: Callow JA (ed) Advances in botanical research, vol 14. Academic Press, New York pp 25–91

    Google Scholar 

  • Hashimoto T, Yamada Y (1994) Alkaloid biogenesis: molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 45:257–285

    CAS  Google Scholar 

  • Heintze A, Riedel A, Aydogdu S et al (1994) Formation of chloroplast isoprenoids from pyruvate and acetate by chloroplasts from young spinach plants. Evidence for a mevalonate pathway in immature chloroplasts. Plant Physiol Biochem 32:791–797

    CAS  Google Scholar 

  • Hemscheidt T, Zenk MH (1985) Partial purification and characterization of a NADPH dependent tetrahydroalstonine synthase from Catharanthus roseus cell suspension cultures. Plant Cell Rep 4:216–219

    CAS  Google Scholar 

  • Hong J, Lee J, Lee H et al (1997) Enhancement of catharanthine production by the addition of paper pulp waste liquors to Catharanthus roseus in chemostat cultivation. Biotechnol Lett 19:967–969

    CAS  Google Scholar 

  • Ikeda H, Esaki N, Nakai S et al (1991) Acyclic monoterpene primary alcohol: NADP super(+)oxidoreductase of Rauwolfia serpentina cells: the key enzyme in biosynthesis of monoterpene alcohols. J Biochem (Tokyo) 109:341–347

    CAS  Google Scholar 

  • Irmler S, Schröder G, St-Pierre B et al (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804

    PubMed  CAS  Google Scholar 

  • Islas-Flores IR, Loyola-Vargas VM, Miranda-Ham ML (1994) Tryptophan decarboxylase activity in transformed roots from Catharanthus roseus and its relationship to tryptamine, ajmalicine, and catharanthine accumulation during the culture cycle. In Vitro Cell Dev Biol Plant 30:81–83

    Google Scholar 

  • Jacobs DI, Gaspari M, van der Greef J et al (2005) Proteome analysis of the medicinal plant Catharanthus roseus. Planta 221:690–704

    PubMed  CAS  Google Scholar 

  • Katano N, Yamamoto H, Iio R et al (2001) 7-Deoxyloganin 7-hydroxylase in Lonicera japonica cell cultures. Phytochemistry 58:53–58

    PubMed  CAS  Google Scholar 

  • Kim H, Choi Y, Verpoorte R (2006) Metabolomic analysis of Catharanthus roseus using NMR and principal component analysis. In: Saito K, Dixon R, Willmitzer L (eds) Plant metabolomics. Springer, Berlin, pp 261–276

    Google Scholar 

  • Knobloch K-H, Berlin J (1983) Influence of phosphate on the formation of the indole alkaloids and phenolic compounds in cell suspension cultures of Catharanthus roseus. I. Comparison of enzyme activities and product accumulation. Plant Cell Tiss Org Cult 2:333–340

    CAS  Google Scholar 

  • Knobloch K-H, Hansen B, Berlin J (1981) Medium-induced formation of indole alkaloids and concomitant changes of interrelated enzyme activities in cell suspension cultures of Catharanthus roseus. Z Naturforsch [C] 36c:40–43

    CAS  Google Scholar 

  • Kutchan TM (1993) Strictosidine: from alkaloid to enzyme to gene. Phytochemistry 32:493–506

    PubMed  CAS  Google Scholar 

  • Kutchan TM (1995) Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070

    PubMed  CAS  Google Scholar 

  • Kutchan TM (2005) A role for intra- and intercellular translocation in natural product biosynthesis. Curr Opi Plant Biol 8:292–300

    CAS  Google Scholar 

  • Kutchan TM, Hampp N, Lottspeich F et al (1988) The cDNA clone for strictosidine synthase from Rauvolfia serpentina. FEBS Lett 237:40–44

    PubMed  CAS  Google Scholar 

  • Kutney JP, Aweryn B, Choi LSL et al (1981) Alkaloid production in Catharanthus roseus cell cultures. IX. Biotransformation studies with 3′,4′-dehydrovinblastine. Heterocycles 16:1169–1171

    CAS  Google Scholar 

  • Kutney JP, Boulet CA, Choi LSL (1988) Alkaloid production in Catharanthus roseus (L.) G. Don cell cultures. XV. Synthesis of bisindole alkaloids by use of immobilized enzyme systems. Heterocycles 27:621–628

    CAS  Google Scholar 

  • Kutney JP, Choi LSL, Kolodziejczyk P et al (1980) Alkaloid production in Catharanthus roseus cell cultures: Isolation and characterization of alkaloids from one cell line. Phytochemistry 19:2589–2595

    CAS  Google Scholar 

  • Laflamme P, St Pierre B, De Luca V (2001) Molecular and biochemical analysis of a Madagascar periwinkle root-specific minovincinine-19-hydroxy-O-acetyltransferase. Plant Physiol 125:189–198

    PubMed  CAS  Google Scholar 

  • Lange BM, Rujan T, Martin W et al (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci (USA) 97:13172–13177

    CAS  Google Scholar 

  • Lange BM, Wildung MR, McCaskill D et al (1998) A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc Natl Acad Sci (USA) 95:2100–2104

    CAS  Google Scholar 

  • Lee CWT, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67:61–71

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (2001) Discovery of the two parallel pathways for isoprenoid biosynthesis in plants. In: Kung S-D, Yang SF (eds) Discoveries in Plant Biology, London, pp 141–161

  • Lichtenthaler HK, Rohmer M, Schwender J et al (1997) A novel mevalonate-independent pathway for the biosynthesis of carotenoids, phytol and prenyl chain of plastoquinone-9 in green algae and higher plants. In: Williams JP, Khan MU, Lem NW (eds) Physiology, biochemistry and molecular biology of plant lipids. Kluwer Academy Publishers, Dordrecht, pp 177–179

    Google Scholar 

  • Loyola-Vargas VM, Méndez-Zeel M, Monforte-González M et al (1992) Serpentine accumulation during greening in normal and tumor tissues of Catharanthus roseus. J Plant Physiol 140:213–217

    CAS  Google Scholar 

  • Luijendijk TJC, Stevens LH, Verpoorte R (1998) Purification and characterisation of strictosidine β-D-glucosidase from Catharanthus roseus cell suspension cultures. Plant Physiol Biochem 36:419–425

    CAS  Google Scholar 

  • Madyastha KM, Coscia CJ (1979a) Detergent-solubilized NADPH-cytochrome C (P-450) reductase from the higher plant, Catharanthus roseus. J Biol Chem 254:2419–2427

    PubMed  CAS  Google Scholar 

  • Madyastha KM, Coscia CJ (1979b) Enzymology of indole alkaloid biosynthesis. Rec Advan Phytochem 13:85–129

    CAS  Google Scholar 

  • Madyastha KM, Guarnaccia R, Baxter C et al (1973) S-Adenosyl-l-methionine: loganic acid methyltransferase. A carboxyl alkylating enzyme from Vinca rosea. J Biol Chem 248:2497–2501

    PubMed  CAS  Google Scholar 

  • Madyastha KM, Meehan TD, Coscia CJ (1976) Characterization of a cytochrome P-450 dependent monoterpene hydroxylase from the higher plant Vinca rosea. Biochemistry 15:1097–1102

    PubMed  CAS  Google Scholar 

  • Madyastha KM, Ridgway JE, Dwyer JG et al (1977) Subcellular localization of a cytochrome P-450-dependent monooxygenase in vesicles of the higher plant Catharanthus roseus. J Cell Biol 72:302–313

    PubMed  CAS  Google Scholar 

  • Magnotta M, Murata J, Chen J et al (2006) Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don by alkaloid and enzymatic profiling. Phytochemistry 67:1758–1764

    PubMed  CAS  Google Scholar 

  • Mahroug S, Courdavault V, Thiersault M et al (2006) Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs. Planta 223:1191–1200

    PubMed  CAS  Google Scholar 

  • Mathews CK, Van Holde KE, Ahern KG (2000) Biochemistry. Addison Wesley Longman, San Francisco

    Google Scholar 

  • McCaskill D, Croteau R (1998) Some caveats for bioengineering terpenoid metabolism in plants. Trends Biotechnol 16:349–355

    CAS  Google Scholar 

  • McFarlane J, Madyastha KM, Coscia CJ (1975) Regulation of secondary metabolism in higher plants. Effect of alkaloids on cytochrome P-450 dependent monooxygenase. Biochem Biophys Res Commun 66:1363–1369

    Google Scholar 

  • McKnight TD, Bergey DR, Burnett RJ et al (1991) Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants. Planta 185:148–152

    CAS  Google Scholar 

  • McKnight TD, Roessner CA, Devagupta R et al (1990) Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res 18:4939

    PubMed  CAS  Google Scholar 

  • Meehan TD, Coscia CJ (1973) Hydroxylation of geraniol and nerol by a monooxygenase from Vinca rosea. Biochem Biophys Res Commun 53:1043–1048

    PubMed  CAS  Google Scholar 

  • Meijer AH (1993) Cytochrome P-450 and secondary metabolism in Catharanthus roseus. Ph. D. Thesis: Faculteit der Godgeleerdheid, Gravenhage, pp 1–151

  • Meijer AH, De Waal A, Verpoorte R (1993a) Purification of the cytochrome P-450 enzyme geraniol 10-hydroxylase from cell cultures of Catharanthus roseus. J Chromatogr 635:237–249

    CAS  Google Scholar 

  • Meijer AH, Lopes-Cardoso MI, Verpoorte R et al (1993b) Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH: cytochrome P-450 reductase, an enzymes essential for reactions catalysed by cytochrome P-450 mono-oxygenases in plants. Plant J 4:47–60

    PubMed  CAS  Google Scholar 

  • Meijer AH, Verpoorte R, Hoge JHC (1993c) Regulation of enzymes and genes involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Plant Res 3:145–164

    Google Scholar 

  • Menke FL, Parchmann S, Mueller MJ et al (1999) Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol 119:1289–1296

    PubMed  CAS  Google Scholar 

  • Mérillon JM, Ouelhazi L, Doireau P et al (1989) Metabolic changes and alkaloid production in habituated and non-habituated cells of Catharanthus roseus grown in hormone-free medium. Comparing hormone-deprived non-habituated cells with habituated cells. J Plant Physiol 134:54–60

    Google Scholar 

  • Merillon JM, Ramawat KG, Chenieux J-C et al (1986) Hormonal autotrophy and production of indole alkaloids in Catharanthus roseus cell cultures. In: Somers DA (ed) VI International congress plant tissue and cell culture. International Association for Plant Tissue Culture, Minneapolis, p 370

    Google Scholar 

  • Misawa M, Endo T, Goodbody AE et al (1988) Synthesis of dimeric indole alkaloids by cell free extracts from cell suspension cultures of Catharanthus roseus. Phytochemistry 27:1355–1359

    CAS  Google Scholar 

  • Misawa M, Goodbody AE (1996) Production of antitumor compounds by plant cell cultures. In: DiCosmo F, Misawa M (eds) Plant cell culture secondary metabolism toward industrial application. CRC Press, Boca Raton, FL, pp 123–138

    Google Scholar 

  • Mizukami H, Nordlov H, Lee S-L et al (1979) Purification and properties of strictosidine synthetase (an enzyme condensing tryptamine and secologanin) from Catharanthus roseus cultured cells. Biochemistry 18:3760–3763

    PubMed  CAS  Google Scholar 

  • Moreno PRH, Van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey. 2. Updating from 1988 to 1993. Plant Cell Tiss Org Cult 42:1–25

    Google Scholar 

  • Moreno-Valenzuela OA (1999) Regulación de la vía de síntesis de los alcaloides indólicos en raíces transformadas de Catharanthus roseus. Centro de Investigación Científica de Yucatán, Mérida, Yucatán

    Google Scholar 

  • Moreno-Valenzuela OA, Galaz-Avalos RM, Minero-García Y et al (1998) Effect of differentiation on the regulation of indole alkaloid production in Catharanthus roseus hairy root. Plant Cell Rep 18:99–104

    CAS  Google Scholar 

  • Moreno-Valenzuela OA, Minero-García Y, Brito-Argáez L et al (2003) Immunocytolocalization of tryptophan decarboxylase in Catharanthus roseus hairy roots. Mol Biotechnol 23:11–18

    PubMed  CAS  Google Scholar 

  • Moreno-Valenzuela OA, Monforte-González M, Muñoz-Sánchez JA et al (1999) Effect of macerozyme on secondary metabolism plant product production and phospholipase C activity in Catharanthus roseus hairy roots. J Plant Physiol 155:447–452

    CAS  Google Scholar 

  • Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79:137–145

    PubMed  CAS  Google Scholar 

  • Morris P, Scragg AH, Smart NJ et al (1985) Secondary product formation by cell suspension cultures. In: Dixon RA (ed) Plant cell culture. A Practical Approach. IRL Press, Oxford, pp 127–167

    Google Scholar 

  • Murata J, Bienzle D, Brandle JE et al (2006) Expressed sequence tags from Madagascar periwinkle (Catharanthus roseus). FEBS Lett 580:4501–4507

    PubMed  CAS  Google Scholar 

  • Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44:581–594

    PubMed  CAS  Google Scholar 

  • Noé W, Mollenschott C, Berlin J (1984) Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol 3:281–288

    Google Scholar 

  • O’Keefe BR, Mahady GB, Gills JJ et al (1997) Stable vindoline production in transformed cell cultures of Catharanthus roseus. J Nat Prod 60:261–264

    CAS  Google Scholar 

  • Oresic M, Rischer H, Oksman-Caldentey K (2006) Metabolomics of plant secondary compounds: profiling of Catharanthus cell cultures. In: Saito K, Dixon R, Willmitzer L (eds) Plant metabolomics. Springer, Berlin, pp 277–289

    Google Scholar 

  • Ouwerkerk PBF, Hallard D, Verpoorte R et al (1999a) Identification of UV-B light-responsive regions in the promoter of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol Biol 41:491–503

    PubMed  CAS  Google Scholar 

  • Ouwerkerk PBF, Trimborn TO, Hilliou F et al (1999b) Nuclear factors GT-1 and 3AF1 interact with multiple sequences within the promoter of the Tdc gene from Madagascar periwinkle: GT-1 is involved in UV light-induced expression. Mol Gen Genet 261:610–622

    PubMed  CAS  Google Scholar 

  • Papon N, Bremer J, Vansiri A et al (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71:572–574

    PubMed  CAS  Google Scholar 

  • Pasquali G, Erven AS, Ouwerkerk PB et al (1999) The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF. Plant Mol Biol 39:1299–1310

    PubMed  CAS  Google Scholar 

  • Pasquali G, Goddijn OJM, De Waal A et al (1992) Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 18:1121–1131

    PubMed  CAS  Google Scholar 

  • Pauw B, Hilliout FAO, Martin VS et al (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279:52940–52948

    PubMed  CAS  Google Scholar 

  • Pfitzner A, Polz L, Stöckigt J (1986) Properties of vinorine synthase—the Rauwolfia enzyme involved in the formation of the ajmaline skeleton. Z Naturforsch [C] 41:103–114

    CAS  Google Scholar 

  • Pfitzner A, Stöckigt J (1982) Partial purification and characterization of geissoschizine dehydrogenase from suspension cultures of Catharanthus roseus. Phytochemistry 21:1585–1588

    CAS  Google Scholar 

  • Pfitzner U, Zenk MH (1989) Homogeneous strictosidine synthase isoenzymes from cell suspension cultures of Catharanthus roseus. Planta Med 55:525–530

    PubMed  CAS  Google Scholar 

  • Power R, Kurz WGW, De Luca V (1990) Purification and characterization of acetylcoenzyme A: deacetylvindoline 4-O-acetyltransferase from Catharanthus roseus. Arch Biochem Biophys 279:370–376

    PubMed  CAS  Google Scholar 

  • Reed BC, Rilling HC (1975) Crystallization and partial characterization of prenyltransferase from avian liver. Biochemistry 14:50–54

    PubMed  CAS  Google Scholar 

  • Rischer H, Oresic M, Seppanen-Laakso T et al (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci (USA) 103:5614–5619

    CAS  Google Scholar 

  • Roberts MF (1998) Enzymology of alkaloids biosynthesis. In: Roberts MF, Wink M (eds) Alkaloids. Biochemistry, ecology, and medicinal applications. Plenum Press, New York, pp 109–146

    Google Scholar 

  • Roberts MF, Wink M (1998) Introduction. In: Roberts MF, Wink M (eds) Alkaloids. Biochemistry, ecology, and medicinal applications. Plenum Press, New York, pp 1–7

    Google Scholar 

  • Robinson T (1974) Metabolism and function of alkaloids in plants. Science 184:430–435

    CAS  PubMed  Google Scholar 

  • Robinson T (1981) The biochemistry of alkaloids. Springer-Verlag

  • Rodriguez S, Compagnon V, Crouch NP et al (2003) Jasmonate-induced epoxidation of tabersonine by cytochrome P-450 in hairy root cultures of Catharanthus roseus. Phytochemistry 64:401–409

    PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P et al (1993) Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Rudney H (1957) The biosynthesis of β-hydroxy-β-methylglutaric acid. J Biol Chem 227:363–377

    PubMed  CAS  Google Scholar 

  • Sáenz-Carbonell L, Santamaría JM, Villanueva MA et al (1993) Changes in the alkaloid content of plants of Catharanthus roseus L. (Don) as a result of water stress and treatment with abscisic acid. J Plant Physiol 142:244–247

    Google Scholar 

  • Sánchez-Iturbe P, Galaz-Avalos RM, Loyola-Vargas VM (2005) Determination and partial purification of a monoterpene cyclase from Catharanthus roseus hairy roots. Phyton 55–69

  • Schiel O, Witte L, Berlin J (1987) Geraniol-10-hydroxylase activity and its relation to monoterpene indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus. Z Naturforsch [C] 42c:1075–1081

    Google Scholar 

  • Schmeller T, Wink M (1998) Utilization of alkaloids in modern medicine. In: Roberts MF, Wink M (eds) Alkaloids. Biochemistry, ecology, and medicinal applications. Plenum Press, New York, pp 435–459

    Google Scholar 

  • Schröder G, Unterbusch E, Kaltenbach M et al (1999) Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett 458:97–102

    PubMed  Google Scholar 

  • Schwender J, Seemann M, Lichtenthaler HK et al (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316:73–80

    PubMed  CAS  Google Scholar 

  • Scott AI (1979) Biosynthesis of indole alkaloids. Acc Chem Res 3:151

    Google Scholar 

  • Shanks JV, Bhadra R, Morgan J et al (1998) Quantification of metabolites in the indole alkaloid pathways of Catharanthus roseus: implications for metabolic engineering. Biotechnol Bioeng 58:333–338

    PubMed  CAS  Google Scholar 

  • Shukla AK, Shasany AK, Gupta MM et al (2006) Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles. J Exp Bot 57:3921–3932

    PubMed  CAS  Google Scholar 

  • Sibéril Y, Benhamron S, Memelink J et al (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 45:477–488

    PubMed  Google Scholar 

  • Singh SN, Vats P, Suri S et al (2001) Effect of an antidiabetic extract of Catharanthus roseus on enzymatic activities in streptozotocin induced diabetic rats. J Ethnopharmacol 76:269–277

    PubMed  CAS  Google Scholar 

  • Smith JI, Amouzou E, Yamaguchi A et al (2003) Peroxidase from bioreactor cultivated Catharanthus roseus cell cultures mediates biosynthesis of α-3′,4′-anhydrovinblastine. Biotechnol Appl Biochem 10:568–575

    Google Scholar 

  • Sottomayor M, Barceló AR (2003) Peroxidase from Catharanthus roseus (L.) G. Don and the biosynthesis of α-3′,4′-anhidrovinblastine: a specific role for multifunctional enzyme. Protoplasma 222:97–105

    PubMed  CAS  Google Scholar 

  • Sottomayor M, De Pinto MC, Salema R et al (1996) The vacuolar localization of a basic peroxidase isoenzyme responsible for the synthesis of α-3′,4′-anhydrovinblastine in Catharanthus roseus (L) G. Don leaves. Plant Cell Environ 19:761–767

    CAS  Google Scholar 

  • Sottomayor M, DiCosmo F, Barceló AR (1997) On the fate of catharanthine and vindoline during the peroxidase-mediated enzymatic synthesis of α-3′,4′-anhydrovinblastine. Enzyme Microb Technol 21:543–549

    CAS  Google Scholar 

  • Sottomayor M, Lopes-Cardoso I, Pereira LG et al (2004) Peroxidase and the biosynthesis of terpenoid indole alkaloids in the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 3:159–171

    CAS  Google Scholar 

  • Sottomayor M, López-Serrano M, DiCosmo F et al (1998) Purification and characterization of α-3′,4′-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L) G. Don. FEBS Lett 428:299–303

    PubMed  CAS  Google Scholar 

  • St-Pierre B, De Luca V (1995) A cytochrome P-450 monooxygenase catalyzes the first step in the conversion of tabersonine to vindoline in Catharanthus roseus. Plant Physiol 109:131–139

    PubMed  CAS  Google Scholar 

  • St-Pierre B, Laflamme P, Alarco AM et al (1998) The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J 14:703–713

    PubMed  CAS  Google Scholar 

  • St-Pierre B, Vázquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    PubMed  CAS  Google Scholar 

  • Stern JR, Drummond GI, Coon MJ et al (1960) Enzymes of ketone body metabolism. I. Purification of an acetoacetate-synthesizing enzyme from ox liver. J Biol Chem 235:313–317

    PubMed  CAS  Google Scholar 

  • Stevens LH, Blom TJM, Verpoorte R (1993) Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep 12:573–576

    CAS  Google Scholar 

  • Stevens LH, Schripsema J, Pennings EJM et al (1992) Activities of enzymes involved in indole alkaloid biosynthesis in suspension cultures of Catharanthus, Cinchona and Tabernaemontana species. Plant Physiol Biochem 30:675–681

    CAS  Google Scholar 

  • Stöckigt J, Husson H-P, Kan-fan Ch et al (1977) Cathenamine, a central intermediate in the cell free biosynthesis of ajmalicine and related indole alkaloids. J Chem Soc Chem Commun 164–166

  • Stöckigt J, Treimer JF, Zenk MH (1976) Synthesis of ajmalicine and related indole alkaloids by cell free extracts of Catharanthus roseus cell suspension cultures. FEBS Lett 70:267–270

    PubMed  Google Scholar 

  • Stöckigt J, Zenk MH (1977a) Isovincoside (strictosidine), the key intermediate in the enzymatic formation of indole alkaloids. FEBS Lett 79:233–237

    Google Scholar 

  • Stöckigt J, Zenk MH (1977b) Strictosidine (isovincoside): the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. J Chem Soc Chem Commun 646–648

  • Sundberg RJ, Smith SQ (2002) The iboga alkaloids and their role as precursors of anti-neoplastic bisindole Catharanthus alkaloids. In: Cordell GA (ed) The alkaloids. Academic Press, San Diego, pp 281–376

    Google Scholar 

  • Svoboda GH, Blake DA (1975) The phytochemistry and pharmacology of Catharanthus roseus (L.) G. Don. In: Taylor WI, Farnsworth NR (eds) The Catharanthus alkaloids. Marcel Dekker, Inc., New York, pp 45–83

    Google Scholar 

  • Tchen TT (1958) Mevalonic kinase: purification and properties. J Biol Chem 233:1100–1103

    PubMed  CAS  Google Scholar 

  • Toivonen L (1992) Utilization of Catharanthus roseus hairy root and cell suspension cultures in plant biotechnology. Ph.D. Thesis, Helsinki University of Technology, Helsinki, pp 1–93

  • Treimer JF, Zenk MH (1979a) Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation. Eur J Biochem 101:225–233

    PubMed  CAS  Google Scholar 

  • Treimer JF, Zenk MH (1979b) Strictosidine synthase from cell cultures of Apocynaceae plants. FEBS Lett 97:159–162

    CAS  Google Scholar 

  • Uesato S, Ikeda H, Fujita T et al (1987) Elucidation of iridodial formation mechanism partial purification and characterization of the novel monoterpene cyclase from Rauwolfia serpentina cell suspension cultures. Tetrahedron Lett 28:4431–4434

    CAS  Google Scholar 

  • Uesato S, Ogawa Y, Inouya H et al (1986) Synthesis of iridodial by cell free extracts from Rauwolfia serpentina cell suspension cultures. Tetrahedron Lett 13:2893–2896

    Google Scholar 

  • Van der Fits L, Zhang H, Menke FLH et al (2000) A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway. Plant Mol Biol 44:675–685

    PubMed  Google Scholar 

  • Van der Heijden R, De Boer-Hlupá V, Verpoorte R et al (1994) Enzymes involved in the metabolism of 3-hydroxy-3-methylglutaryl-coenzyme A in Catharanthus roseus. Plant Cell Tiss Org Cult 38:345–349

    Google Scholar 

  • Van der Heijden R, Jacobs DI, Snoeijer W et al (2004) The Catharanthus alkaloids: Pharmacognosy and biotechnology. Curr Med Chem 11:1241–1253

    Google Scholar 

  • Van der Heijden R, Verpoorte R, Ten Hoopen HJG (1989) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tiss Org Cult 18:231–280

    Google Scholar 

  • Vázquez-Flota F, De Carolis E, Alarco AM et al (1997) Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L) G. Don. Plant Mol Biol 34:935–948

    PubMed  Google Scholar 

  • Vázquez-Flota F, De Luca V (1998a) Developmental and light regulation of desacetoxyvindoline 4-hydroxylase in Catharanthus roseus (L.) G. Don. Evidence of a multilevel regulatory mechanism. Plant Physiol 117:1351–1361

    PubMed  Google Scholar 

  • Vázquez-Flota F, De Luca V, Carrillo-Pech MR et al (2002) Vindoline biosynthesis is transcriptionally blocked in Catharanthus roseus cell suspension cultures. Mol Biotechnol 22:1–8

    PubMed  Google Scholar 

  • Vázquez-Flota F, Loyola-Vargas VM (1994) A Catharanthus roseus salt tolerant line. II. Alkaloid production. J Plant Physiol 144:613–616

    Google Scholar 

  • Vázquez-Flota F, Monforte-González M, Méndez-Zeel M et al (2000a) Effects of nitrogen source on alkaloid metabolism in callus cultures of Catharanthus roseus (L.) G Don. Phyton 66:155–164

    Google Scholar 

  • Vázquez-Flota F, Moreno-Valenzuela OA, Miranda-Ham ML et al (1994) Catharanthine and ajmalicine synthesis in Catharanthus roseus hairy root cultures. Medium optimization and elicitation. Plant Cell Tiss Org Cult 38:273–279

    Google Scholar 

  • Vázquez-Flota FA, De Luca V (1998b) Jasmonate modulates development- and light-regulated alkaloid biosynthesis in Catharanthus roseus. Phytochemistry 49:395–402

    PubMed  Google Scholar 

  • Vázquez-Flota FA, St Pierre B, De Luca V (2000b) Light activation of vindoline biosynthesis does not require cytomorphogenesis in Catharanthus roseus seedlings. Phytochemistry 55:531–536

    PubMed  Google Scholar 

  • Verpoorte R, Van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transg Res 9:323–343

    CAS  Google Scholar 

  • Verpoorte R, Van der Heijden R, Moreno PRH (1997) Biosynthesis of terpenoid indole alkaloids in Catharanthus roseus cells. In: Cordell GA (ed) The alkaliods. Academic Press, San Diego, pp 221–299

    Google Scholar 

  • Verpoorte R, Van der Heijden R, Schripsema J et al (1993) Plant cell biotechnology for the production of alkaloids: present status and prospects. J Nat Prod 56:186–207

    CAS  Google Scholar 

  • Vetter H-P, Mangold U, Schröder G et al (1992) Molecular analysis and heterologous expression of an inducible cytochrome P-450 protein from periwinkle (Catharanthus roseus L.). Plant Physiol 100:998–1007

    Article  PubMed  CAS  Google Scholar 

  • von Schumann G, Gao S, Stöckigt J (2002) Vomilenina reductasa a novel enzyme catalyzing a crucial step in the biosynthesis of the therapeutically applied antiarrhythmic alkaloid ajmaline. Bioorg Med Chem 10:1913–1918

    Google Scholar 

  • Waterman PG (1998) Chemical taxonomy of alkaloids. In: Roberts MF, Wink M (eds) Alkaloids. Biochemistry, ecology, and medicinal applications. Plenum Press, New York, pp 87–107

    Google Scholar 

  • Westekemper P, Wieczorek U, Gueritte F et al (1980) Radioimmunoassay for the determination of the indole alkaloid vindoline in Catharanthus. Planta Med 39:24–37

    CAS  Google Scholar 

  • Whitmer S, Canel C, Hallard D et al (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol 116:853–857

    PubMed  CAS  Google Scholar 

  • Whitmer S, Van der Heijden R, Verpoorte R (2002a) Effect of precursor feeding on alkaloid accumulation by a strictosidine synthase over-expressing transgenic cell line S1 of Catharanthus roseus. Plant Cell Tiss Org Cult 69:85–93

    CAS  Google Scholar 

  • Whitmer S, Van der Heijden R, Verpoorte R (2002b) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Katano N, Ooi A et al (2000) Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450. Phytochemistry 53:7–12

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Katano N, Ooi Y et al (1999) Transformation of loganin and 7-deoxyloganin into secologanin by Lonicera japonica cell suspension cultures. Phytochemistry 50:417–422

    CAS  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opi Plant Biol 8:301–307

    CAS  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191

    PubMed  CAS  Google Scholar 

  • Zenk MH, Deus B (1982) Natural product synthesis by plant cell cultures. In: Fujiwara A (ed) Proceedings 5th international congress of plant tissue and cell culture. The Japanese Association for Plant Tissue Culture, Japan, pp 391–394

  • Zhao J, Hu Q, Guo YQ et al (2001a) Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Appl Microbiol Biotechnol 55:693–698

    PubMed  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2001b) Effects of light and plant growth regulators on the biosynthesis of vindoline and other indole alkaloids in Catharanthus roseus callus cultures. Plant Growth Regul 33:43–49

    CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2001c) Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme Microb Technol 28:673–681

    PubMed  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2001d) Selection of fungal elicitors to increase indole alkaloid accumulation in Catharanthus roseus suspension cell culture. Enzyme Microb Technol 28:666–672

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Emily Wortman-Wunder, Clelia De la Peña and Elan Alford for English correction of the manuscript as well as to the anonymous reviewers. For the nomenclature of the enzymes, the rules of the International Union of Biochemistry and Molecular Biology (http://www.chem.qmw.ac.uk/iubmb/enzyme/) were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Manuel Loyola-Vargas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loyola-Vargas, V.M., Galaz-Ávalos, R.M. & Kú-Cauich, R. Catharanthus biosynthetic enzymes: the road ahead. Phytochem Rev 6, 307–339 (2007). https://doi.org/10.1007/s11101-007-9064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-007-9064-2

Keywords

Navigation