Skip to main content
Log in

Amperometric nonenzymatic determination of glucose via a glassy carbon electrode modified with nickel hydroxide and N-doped reduced graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a nonenzymatic glucose sensor that was obtained by electrochemical deposition and oxidization of metallic nickel on the surface of nitrogen-doped reduced graphene oxide (N-RGO) placed on a glassy carbon electrode (GCE). An analysis of the morphology and chemical structure indicated the composite to possess a well-defined vermicular Ni(OH)2 nanorods combined with N-RGO. The electrochemical performance of the modified GCE with respect to the detection of glucose in 0.1 M NaOH was investigated by cyclic voltammetry and amperometry. The wrinkle and protuberance of N-RGO for loading of nanostructured Ni(OH)2 are found to increase electrical conductivity, surface area, electrocatalytical activity and stability. The modified GCE displays a high electrocatalytic activity towards the oxidation of glucose in 0.1 M NaOH solution. The lower detection limit is 0.12 μM at an applied potential of +0.45 V (vs Ag/AgCl) (S/N=3), and the sensitivity is 3214 μA mM−1 cm−2. The modified GCE possesses long-term stability, good reproducibility and high selectivity over fructose, sucrose and lactose.

The composite of vermicular Ni(OH)2 nanorods combined with N-doped reduced graphene oxide is a viable catalyst for non-enzymatic electrochemical sensing of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705

    Article  CAS  Google Scholar 

  2. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186

    Article  CAS  Google Scholar 

  3. Zheng M, Li L, Gu P, Lin Z, Xue H, Pang H (2017) A glassy carbon electrode modified with ordered nanoporous Co3O4 for non-enzymatic sensing of glucose. Microchim Acta 184:943–949

    Article  CAS  Google Scholar 

  4. Zhao L, Wu G, Cai Z, Zhao T, Yao Q, Chen X (2015) Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim Acta 182:2055–2060

    Article  CAS  Google Scholar 

  5. Mei H, Wu W, Yu B, Li Y, Wu H, Wang S, Xia Q (2015) Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported co@Pt core-shell nanoparticles. Microchim Acta 182:1869–1875

    Article  CAS  Google Scholar 

  6. Nayak P, Nair SP, Ramaprabhu S (2016) Enzyme-less and low-potential sensing of glucose using a glassy carbon electrode modified with palladium nanoparticles deposited on graphene-wrapped carbon nanotubes. Microchim Acta 183:1055–1062

    Article  CAS  Google Scholar 

  7. Dhara K, Thiagarajan R, Nair BG, Thekkedath GSB (2015) Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles. Microchim Acta 182:2183–2192

    Article  CAS  Google Scholar 

  8. Liu X, Yang W, Chen L, Jia J (2016) Synthesis of copper nanorods for non-enzymatic amperometric sensing of glucose. Microchim Acta 183:2369–2375

    Article  CAS  Google Scholar 

  9. Zhang B, He Y, Liu B, Tang D (2015) Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing. Microchim Acta 182:625–631

    Article  CAS  Google Scholar 

  10. Zhong A, Luo X, Chen L, Wei S, Liang Y, Li X (2015) Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchim Acta 182:1197–1204

    Article  CAS  Google Scholar 

  11. Mei L, Zhang P, Chen J, Chen D, Quan Y, Gu N, Zhang G, Cui R (2016) Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion. Microchim Acta 183:1359–1365

    Article  CAS  Google Scholar 

  12. Zhang C, Ni H, Chen R, Zhan W, Zhang B, Lei R, Xiao T, Zha Y (2015) Enzyme-free glucose sensing based on Fe3O4 nanorod arrays. Microchim Acta 182:1811–1818

    Article  CAS  Google Scholar 

  13. Yu H, Jian X, Jin J, Zheng X, Liu R, Qi G (2015) Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, overoxidized polypyrrole and multi-walled carbon nanotubes. Microchim Acta 182:157–165

    Article  CAS  Google Scholar 

  14. Shackery I, Patil U, Pezeshki A, Shinde NM, Im S, Jun SC (2016) Enhanced non-enzymatic amperometric sensing of glucose using co(OH)2. Microchim Acta 183:2473–2479

    Article  CAS  Google Scholar 

  15. Gao Z, Lin Y, He Y, Tang D (2017) Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly (vinyl butyral) incorporating a hybrid nanostructure composed of molybdenum disulfide and copper sulfide. Microchim Acta 184:1–8

    Article  Google Scholar 

  16. Lin Y, Chen X, Lin Y, Zhou Q, Tang D (2015) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta 182:1803–1809

    Article  CAS  Google Scholar 

  17. Wang Y, Zhang S, Bai W, Zheng J (2016) Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: a new nonenzymatic electrochemical sensor for glucose. Talanta 149:211–216

    Article  CAS  Google Scholar 

  18. Ye J-S, Hong B-D, Wu Y-S, Chen H-R, Lee C-L (2016) Heterostructured palladium-platinum core-shell nanocubes for use in a nonenzymatic amperometric glucose sensor. Microchim Acta 183:3311–3320

    Article  CAS  Google Scholar 

  19. Shi L, Niu X, Liu T, Zhao H, Lan M (2015) Electrocatalytic sensing of hydrogen peroxide using a screen printed carbon electrode modified with nitrogen-doped graphene nanoribbons. Microchim Acta 182:2485–2493

    Article  CAS  Google Scholar 

  20. Feng X, Zhang Y, Zhou J, Li Y, Chen S, Zhang L, Ma Y, Wang L, Yan X (2015) Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nano 7:2427–2432

    CAS  Google Scholar 

  21. Lei W, Si W, Hao Q, Han Z, Zhang Y, Xia M (2015) Nitrogen-doped graphene modified electrode for nimodipine sensing. Sensors Actuat B- Chem 212:207–213

    Article  CAS  Google Scholar 

  22. Panchakarla L, Subrahmanyam K, Saha S, Govindaraj A, Krishnamurthy H, Waghmare U, Rao C (2009) Synthesis, structure and properties of boron and nitrogen doped graphene. arXiv preprint arXiv:09023077

  23. Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944

    Article  CAS  Google Scholar 

  24. Sheng Z, Shao L, Chen J, Bao W, Wang F, Xia X (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358

    Article  CAS  Google Scholar 

  25. Xia X, Lei W, Hao Q, Wang W, Sun Y, Wang X (2013) One-pot synthesis and electrochemical properties of nitrogen-doped graphene decorated with M(OH)x (M= FeO, Ni, co) nanoparticles. Electrochim Acta 113:117–126

    Article  CAS  Google Scholar 

  26. Hui N, Wang S, Xie H, Xu S, Niu S, Luo X (2015) Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly (3, 4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. Sensors Actuat B-Chem 221:606–613

    Article  CAS  Google Scholar 

  27. Yuan B, Xu C, Deng D, Xing Y, Liu L, Pang H, Zhang D (2013) Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim Acta 88:708–712

    Article  CAS  Google Scholar 

  28. Karikalan N, Velmurugan M, Chen S-M, Karuppiah C (2016) Modern approach to the synthesis of Ni(OH)2 decorated sulfur doped carbon nanoparticles for the nonenzymatic glucose sensor. ACS Appl Mater Interfaces 8:22545–22553

    Article  CAS  Google Scholar 

  29. Liu Y, Pang H, Wei C, Hao M, Zheng S, Zheng M (2014) Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. Microchim Acta 181:1581–1589

    Article  CAS  Google Scholar 

  30. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl Mater Interfaces 2:821–828

    Article  CAS  Google Scholar 

  31. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  32. Li H, Yu M, Wang F, Liu P, Liang Y, Xiao J, Wang C, Tong Y, Yang G (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894

    Article  CAS  Google Scholar 

  33. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  34. Wang Z, Jia R, Zheng J, Zhao J, Li L, Song J, Zhu Z (2011) Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells. ACS Nano 5:1677–1684

    Article  CAS  Google Scholar 

  35. Ko C-Y, Huang J, Raina S, Kang WP (2013) A high performance non-enzymatic glucose sensor based on nickel hydroxide modified nitrogen-incorporated nanodiamonds. Analyst 138:3201–3208

    Article  CAS  Google Scholar 

  36. Zhao Y, Gu G, You S, Ji R, Suo H, Zhao C, Liu F (2015) Preparation of Ni(OH)2 nanosheets on Ni foam via a direct precipitation method for a highly sensitive non-enzymatic glucose sensor. RSC Adv 5:53665–53670

    Article  CAS  Google Scholar 

  37. Yang J, Cho M, Lee Y (2016) Synthesis of hierarchical Ni(OH)2 hollow nanorod via chemical bath deposition and its glucose sensing performance. Sensors Actuat B-Chem 222:674–681

    Article  CAS  Google Scholar 

  38. Lu P, Liu Q, Xiong Y, Wang Q, Lei Y, Lu S, Lu L, Yao L (2015) Nanosheets-assembled hierarchical microstructured Ni(OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors. Electrochim Acta 168:148–156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51572127, 21576138), China-Israel Cooperative Program (S2016G5243), Program for NCET-12-0629, Ph.D. Program Foundation of Ministry of Education of China (No.20133219110018), Six Major Talent Summit (XNY-011), Natural Science Foundation of Jiangsu Provience (BK20160828), Postdoctoral Science Foundation (1501016B) and PAPD of Jiangsu Province, and the program for Science and Technology Innovative Research Team in Universities of Jiangsu Province, China.

We also thank Dr. Wanying Tang at Analysis and Test Center Nanjing University of Science and Technology for the Raman data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu Lei or Qingli Hao.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lei, W., Wu, Q. et al. Amperometric nonenzymatic determination of glucose via a glassy carbon electrode modified with nickel hydroxide and N-doped reduced graphene oxide. Microchim Acta 184, 3103–3111 (2017). https://doi.org/10.1007/s00604-017-2332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2332-y

Keywords

Navigation