Skip to main content
Log in

Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mesoporous ZnO-NiO architectures were prepared by thermal annealing of zinc-nickel hydroxycarbonate composites. The resulting architectures are shown to be assembled by many mesoporous nanosheets, and this results in a large surface area and a strong synergy between the ZnO and NiO nanoparticles. The material obtained by annealing at 400 °C was used as an electrode that responds to glucose over a wide concentration range (from 0.5 μM to 6.4 mM), with a detection limit as low as 0.5 μM, fast response time (<3 s), and good sensitivity (120.5 μA · mM−1 · cm−2).

The mesoporous ZnO-NiO architecture by annealing at 400 °C was used as an electrode that responds to glucose over a wide concentration range (from 0.5 μM to 6.4 mM), with a detection limit as low as 0.5 μM, fast response time (<3 s), and good sensitivity (120.5 μA · mM−1 · cm−2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu P, Cai ZW, Gao Y, Zhang H, Cai CX (2011) Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells. Chem Commun 47:11327

    Article  CAS  Google Scholar 

  2. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161

    Article  CAS  Google Scholar 

  3. Xie FY, Huang Z, Chen C, Xie QJ, Huang Y, Qin C, Liu Y, Su ZH, Yao SZ (2012) Preparation of Au-film electrodes in glucose containing Au-electroplating aqueous bath for high-performance nonenzymatic glucose sensor and glucose/O2 fuel cell. Electrochem Commun 18:108

    Article  CAS  Google Scholar 

  4. Yuan JH, Wang K, Xia XH (2005) Highly ordered platinum nanotube arrays for amperometric glucose sensing. Adv Funct Mater 15:803

    Article  CAS  Google Scholar 

  5. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997

    Article  CAS  Google Scholar 

  6. Li LH, ZhangWD YJS (2008) Electrocatalytic oxidation glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis 20:2212

    Article  CAS  Google Scholar 

  7. Zhang L, Ni Y, Li H (2010) Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim Acta 171:103

    Article  CAS  Google Scholar 

  8. Weng S, Zheng Y, Zhao C, Zhou J, Lin L, Zheng Z, Lin X (2013) CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications. Microchim Acta 180:371

    Article  CAS  Google Scholar 

  9. Zhu X, Jiao Q, Zhang C, Zuo X, Xiao X, Liang Y, Nan J (2013) Glassy carbon electrode modified with nickel (II) oxides and graphene. Microchim Acta 180:477

    Article  CAS  Google Scholar 

  10. Chen Q, Wang J, Rayson G, Tian B, Lin Y (1993) Sensor array for carbohydrates and amino acids based on electrocatalytic modified electrodes. Anal Chem 65:251

    Article  CAS  Google Scholar 

  11. Ojani R, Raoof JB, Fathi S (2008) Electrocatalytic oxidation of some carbohydrates by nickel/poly (o-aminophenol) modified carbon paste electrode. Electroanalysis 20:1825

    Article  CAS  Google Scholar 

  12. Zhang Y, Xu F, Sun Y, Shi Y, Wen Z, Li Z (2011) Assembly of Ni (OH) 2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21:16949

    Article  CAS  Google Scholar 

  13. Martins PR, RochaMA AL, Toma HE, Araki K (2011) Highly sensitive amperometric glucose sensor based on nanostructured α-Ni (OH) 2 electrode. Electroanalysis 23:2541

    Article  CAS  Google Scholar 

  14. Sun JY, Huang KJ, Fan Y, Wu ZW, Li DD (2011) Glassy carbon electrode modified with a film composed of Ni (II), quercetin and graphene for enzyme-less sensing of glucose. Microchim Acta 174:289

    Article  CAS  Google Scholar 

  15. Pang H, Wei CZ, Ma YH, Zhao SS, Li GC, Zhang JS, Chen J, Li SJ (2013) Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors. ChemPlusChem 78:546

    Article  CAS  Google Scholar 

  16. Pang H, Wang SM, Li GC, Ma YH, Li J, Li XX, Zhang L, Zhang JS, Zheng HH (2013) Cu Superstructures original fabricated by tree leaves and Cu-MnO2 superstructures for high performance supercapacitors. J Mater Chem A 1:5053

    Article  CAS  Google Scholar 

  17. Wu HB, Pang H, Lou XW (2013) Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy. Environ Sci 6:3619

    CAS  Google Scholar 

  18. Pang H, Yan ZZ, Wei YY, Li XX, Li J, Zhang L, Chen J, Zhang JS, Zheng HH (2013) The morphology evolution of nickel phosphite hexagonal polyhedrons and their primary electrochemical capacitor applications. Part Part Syst Charact 30:287

    Article  CAS  Google Scholar 

  19. Pang H, Liu YY, Ma YH, Li GC, Ai YN, Chen J, Zhang JS, Zheng HH (2013) Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. Nanoscale 5:503

    Article  CAS  Google Scholar 

  20. Han M, Liu Q, He JH, Song Y, Xu Z, Zhu JM (2007) Controllable Synthesis and Magnetic Properties of Cubic and Hexagonal Phases Nickel Nanocrystals. Adv Mater 19:1096

    Article  CAS  Google Scholar 

  21. Liu JF, Wang LL, Sun XM, Zhu XQ (2010) Cerium Vanadate Nanorod Arrays from Ionic Chelator-mediated Self-assembly. Angew Chem Int Ed 49:3492

    Article  CAS  Google Scholar 

  22. Wang H, Hao QL, Yang XJ, Lu LD, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2:2164

    Article  CAS  Google Scholar 

  23. Xia XF, Hao QL, Lei W, Wang WJ, Sun DP, Wang X (2012) Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors. J Mater Chem 22:16844

    Article  CAS  Google Scholar 

  24. Li WZ, Kuai L, Qin Q, Geng BY (2013) Ag–Au bimetallic nanostructures: co-reduction synthesis and their component-dependent performance for enzyme-free H2O2 sensing. J Mater Chem A 1:7111

    Article  CAS  Google Scholar 

  25. Chen L, Kuai L, Geng BY (2013) Shell structure-enhanced electrocatalytic performance of Au–Pt core–shell catalyst. CrystEngComm 15:2133

    Article  CAS  Google Scholar 

  26. Zhu GX, Xu Z (2011) Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. J Am Chem Soc 133:148

    Article  CAS  Google Scholar 

  27. Pei RJ, Cheng ZL, Wang EK, Yang XR (2001) Amplification of antigen–antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy. Biosens Bioelectron 16:355

    Article  CAS  Google Scholar 

  28. Karyakin AA, Karyakina EE, Gorton L Prussian-Blue-based amperometric biosensors in flow-injection analysis. (1996) Talanta 43:1597

  29. Ojani R, Raoof JB, Fathi S (2008) Electrocatalytic oxidation of some carbohydrates by nickel/poly (o-aminophenol) modified carbon paste electrode. Electroanalysis 20:1825

    Article  CAS  Google Scholar 

  30. Liu Y, Teng H, Hou HQ, You TY (2009) Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticles-loaded carbon nanofiber paste electrode. Biosens Bioelectron 24:3329

    Article  CAS  Google Scholar 

  31. Zhang Y, Xu F, Sun Y, Shi Y, Wen Z, Li Z (2011) Assembly of Ni (OH) 2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21:16949

    Article  CAS  Google Scholar 

  32. Martins PR, Rocha MA, Angnes L, Toma HE, Araki K (2011) Highly sensitive amperometric glucose sensor based on nanostructured α-Ni (OH) 2 electrode. Electroanalysis 23:2541

    Article  CAS  Google Scholar 

  33. Zhang L, Yuan SM, Lu XJ (2014) Amperometric nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite made from nickel (II) hydroxide nanoplates and carbon nanofibers. Microchim Acta 181:365–372

    Article  CAS  Google Scholar 

  34. Zhu X, Jiao Q, Zhang C, Zuo X, Xiao X, Liang Y, Nan J (2013) Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel (II) oxides and graphene. Microchim Acta 180:477

    Article  CAS  Google Scholar 

  35. Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85:3561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Program for New Century Excellent Talents from the ministry of education (NCET-13-0645) and National Natural Science Foundation of China (NSFC-21201010, 51202106), the Science & Technology Foundation of Henan Province (122102210253, 13A150019), the China Postdoctoral Science Foundation (2012 M521115), and the opening research foundations of State Key Laboratory of Coordination Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Pang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Pang, H., Wei, C. et al. Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. Microchim Acta 181, 1581–1589 (2014). https://doi.org/10.1007/s00604-014-1275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1275-9

Keywords

Navigation