Skip to main content
Log in

Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a non-enzymatic electrochemical sensing strategy for ultrasensitive detection of hydrogen peroxide (H2O2) at nanomolar levels. A glassy carbon electrode (GCE) was modified with a hybrid material consisting of multiwalled carbon nanotubes (CNT) and molybdenum disulfide (MoS2). Transmission electron microscopy and Raman spectroscopy were employed to characterize the hybrid nanostructures. GCEs modified with carbon nanotubes, or nanoscaled MoS2, or with the CNT-MoS2 hybrid were investigated with respect to sensing H2O2, and this revealed that the GCE modified with the CNT-MoS2 hybrid performed best and resulted in a limit of detection as low as 5.0 nM. A repeatability and intermediate precision of 9 % was accomplished. The method was applied to determine H2O2 in spiked sterilized milk and gave satisfactory results.

A nonenzymatic electrochemical sensing strategy was developed for ultrasensitive detection of hydrogen peroxide at the nanomolar level by using multi-walled carbon nanotube-MoS2 hybrid nanostructures as peroxidase mimics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baghayeri M, Zare E, Lokouraj M (2014) Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles. Microchim Acta 182:771

    Article  Google Scholar 

  2. Eum J, Hwang S, Ju Y, Shim J, Piao Y, Lee J, Kim H, Kim J (2014) A highly sensitive immunoassay using antibody-conjugated spherical mesoporous silica with immobilized enzymes. Chem Commun 50:3546

    Article  CAS  Google Scholar 

  3. Sun X, Guo S, Liu Y, Sun S (2012) Dumbbell-like PtPd–Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett 12:4859

    Article  CAS  Google Scholar 

  4. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689

    Article  CAS  Google Scholar 

  5. Terai T, Nagano T (2013) Small-molecule fluorophores and fluorescent probes for bioimaging. Arch Eur Phys 465:347

    Article  CAS  Google Scholar 

  6. Bortolozzi R, Gradowski S, Ihmels H (2014) Selective ratiometric detection of H2O2 in water and in living cells with boronobenzo [b] quinolizinium derivatives. Chem Commun 50:8242

    Article  CAS  Google Scholar 

  7. Wang T, Zhu H, Zhuo J, Zhu Z, Li M (2013) Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem 85:10289

    Article  CAS  Google Scholar 

  8. Chung C, Srikun D, Lim C (2011) A two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissue. Chem Commun 47:9618

    Article  CAS  Google Scholar 

  9. Eum J, Hwang S, Ju Y, Shim J, Piao Y, Lee J, Kim H, Kim J (2014) A highly sensitive immunoassay using antibody-conjugated spherical mesoporous silica with immobilized enzymes. Chem Commun 50:3546

    Article  CAS  Google Scholar 

  10. Li Y, Zheng J, Sheng Q, Wang B (2015) Synthesis of Ag@AgCl nanoboxes, and their application to electrochemical sensing of hydrogen peroxide at very low potential. Microchim Acta 182:61

    Article  CAS  Google Scholar 

  11. Doroftei F, Pinterala T, Arvinte A (2014) Enhanced stability of a Prussian blue/sol-gel composite for electrochemical detection of hydrogen peroxide. Microchim Acta 181:111

    Article  CAS  Google Scholar 

  12. Hasanzadeh M, Shadjou N, de la Guardia M (2014) Electrochemical biosensing using hydrogel nanoparticles. TrAC Anal Chem 62:11

    Article  CAS  Google Scholar 

  13. Zhang B, Tang D, Goryacheva I, Niessner R, Knopp D (2013) Anodic-stripping voltammetric immunoassay for ultrasensitive detection of low-abundance proteins using quantum dot aggregated hollow microspheres. Chem Eur J 19:2496

    Article  CAS  Google Scholar 

  14. Gao Z, Deng K, Wang X, Miro M, Tang D (2014) High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod. ACS Appl Mater Interaces 6:18243

    Article  CAS  Google Scholar 

  15. Ammam M (2014) Electrochemical and electrophoretic deposition of enzymes: principles, differences and application in miniaturized biosensor and biofuel cell electrodes. Biosens Bioelectron 58:121

    Article  CAS  Google Scholar 

  16. Rao M, Scelza R, Acevedo F, Diez M, Gianfreda L (2014) Enzymes as useful tools for environmental purpose. Chemosphere 107:145

    Article  CAS  Google Scholar 

  17. Gawande M, Monga Y, Zboril R, Sharma R (2015) Silica-decorated magnetic nanocomposites for catalytic application. Coord Chem Rev 288:118

    Article  CAS  Google Scholar 

  18. Zhan G, Zeng H (2015) General strategy for preparation of carbon-nanotube-supported nanocatalysts with hollow cavities and mesoporous shells. Chem Mater 27:726

    Article  CAS  Google Scholar 

  19. Liu H, Gu C, Xiong W, Zhang M (2015) A sensitive hydrogen peroxide biosensor using ultra-small CulnS2 nanocrystals as peroxidase mimics. Sens Actu B 209:670

    Article  CAS  Google Scholar 

  20. Zhang B, He Y, Liu B, Tang D (2015) Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing. Microchim Acta 182:625

    Article  CAS  Google Scholar 

  21. Wang Z, Yang X, Yang J, Jiang Y, He N (2015) Peroxidase-like activity of mesoporous silica encapsulated Pt nanoparticle and its application in colorimetric immunoassay. Anal Chim Acta 862:53

    Article  CAS  Google Scholar 

  22. Cui X, Wu S, Li Y, Wan G (2015) Sensing hydrogen peroxide using a glassy carbon electrode modified in-situ electrodeposited platinum-gold bimetallic nanoclusters on a graphene surface. Microchim Acta 182:265

    Article  CAS  Google Scholar 

  23. Shen L, Luo M, Liu Y, Liang R, Jiang F, Wu L (2015) Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production. Appl Catal B 166–167:445

    Article  Google Scholar 

  24. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296

    Article  CAS  Google Scholar 

  25. Lee H, Min S, Chang Y (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12:3695

    Article  CAS  Google Scholar 

  26. Hu L, Ren Y, Yang H, Xu Q (2014) Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl Mater Interfaces 6:14644

    Article  CAS  Google Scholar 

  27. Xu S, Li D, Wu P (2015) One-pot, facile, and versatile syntheisis of monolayer MoS2/WS2 quantum dots as bioimaging probe and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25:1127

    Article  CAS  Google Scholar 

  28. Ito Y, Cong W, Fujita T, Tang X, Chen M (2014) High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew Chem Int Ed 54:2131

    Article  Google Scholar 

  29. Huang K, Wang L, Zhang J, Wang L, Mo Y (2014) One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor. Energy 67:234

    Article  CAS  Google Scholar 

  30. Tarasov A, Zhang S, Tasi M, Campbell P, Graham S, Barlow S, Marder S, Vogel E (2015) Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv Mater 27:1175

    Article  CAS  Google Scholar 

  31. Ambrosi A, Sofer Z, Pumera M (2015) Lithium intercalation compound dramatically influence the electrochemical properties of exfoliated MoS2. Small 11:605

    Article  CAS  Google Scholar 

  32. Grilc M, Veryasov G, Likozar B, Jesih A, Levec J (2015) Hydrodeoxygenation of solvolysed ligocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts. Appl Catal B 163:467

    Article  CAS  Google Scholar 

  33. Xu J, Cao X (2015) Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chem Eng J 260:642

    Article  CAS  Google Scholar 

  34. Wang N, Han Y, Xu Y, Gao C, Cao X (2015) Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Anal Chem 87:457–463

    Article  CAS  Google Scholar 

  35. Sun Y, He K, Zhang Z, Zhou A, Duan H (2015) Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode. Biosens Bioelectron 68:358

    Article  CAS  Google Scholar 

  36. Liu J, Lu L, Li A, Tang J, Wang S, Xu S, Wang L (2015) Simultaneous detection of hydrogen peroxide and glucose in human serum with upconversion luminescence. Biosens Bioelectron 68:204

    Article  CAS  Google Scholar 

  37. Zhao D, Xu C (2015) A nanoprous palladium-nickel alloy with high sensing performance towards hydrogen peroxide and glucose. J Colloid Interfaces Sci 447:50

    Article  CAS  Google Scholar 

  38. Zhang J, Tu L, Zhao S, Liu G, Wang Y, Wang Y, Yue Z (2015) Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose. Biosens Bioelectron 67:296

    Article  CAS  Google Scholar 

  39. Gong Y, Chen X, Lu Y, Yang W (2015) Self-assembled dipeptide-gold nanoparticle hybrid spheres for highly sensitive amperometric hydrogen peroxide biosensors. Biosens Bioelectron 66:392

    Article  CAS  Google Scholar 

  40. Chen X, Wang Q, Wang L, Gao F, Wang W, Hu Z (2015) Imidazoline derivative templated synthesis of broccoli-like Bi2S3 and its electrocatalysis towards the direct electrochemistry of hemoglobin. Biosens Bioelectron 66:216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support by the National Natural Science Foundation of China (41176079, 21305016 & 21475025), the National Science Foundation of Fujian Province (2014 J07001), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1116) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Chen, X., Lin, Y. et al. Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta 182, 1803–1809 (2015). https://doi.org/10.1007/s00604-015-1517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1517-5

Keywords

Navigation