Skip to main content
Log in

Green Synthesis of Ag NPs/rGO Nanocomposite for Use as a Non-enzymatic Sensor of H2O2

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The detection and sensing of hydrogen peroxide (H2O2) by electrochemical nanocomposite-based sensors hold significant advantages over other common sensing materials due to their unique surface modification properties. Here, a nanocomposite is fabricated based on silver (Ag) nanoparticles (NPs) and reduced graphene oxide (rGO) using a green synthesis method from the extract of peppermint as a stabilizing and reducing agent. A pronounced surface plasmonic resonance (SPR) effect is observed in UV-visible spectrum of Ag NPs/rGO nanocomposite, indicating the plasmonic effect of Ag NPs around a wavelength of approximately 400 nm. This spectral signature serves as compelling evidence of the successful integration of Ag NPs into the rGO matrix, highlighting their robust anchoring within the intricate graphene structure. The resulting nanocomposite is then utilized to prepare a disposable electrochemical sensor on the basis of a glassy carbon electrode, contributing the specific features of both Ag NPs and graphene as well as the inherent high specific area and fast electron transfer of the nanohybrid structure. These features lead to an improvement in electrocatalytic efficiency of the nanocomposite compared to that of separate Ag NPs and rGO. The kinetic parameters and oxidation mechanism involved in the nanocomposite are investigated, achieving optimum reaction conditions. Accordingly, the non-enzymatic electrochemical sensor is capable of detecting H2O2 concentrations over the range of 20 to 1250 µM. The detection limit is found to be 13.55 µM at a signal-to-noise ratio of 3 along with a response time of 2 s. Alternatively, Ag NPs/rGO nanocomposite with SPR effect is tested against different bacterial species, and the results show its effective antibacterial performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Chen Z, Yao D, Chu C, Mao S (2023) Photocatalytic H2O2 production systems: design strategies and environmental applications. Chem Eng J 451:138489

    Article  CAS  Google Scholar 

  2. Recio E, Álvarez-Rodríguez ML, Rumbero A, Garzón E, Coque JJR (2011) Destruction of chloroanisoles by using a hydrogen peroxide activated method and its application to remove chloroanisoles from cork stoppers. J Agric Food Chem 59:12589–12597

    Article  CAS  PubMed  Google Scholar 

  3. Gouthamchandra K, Sudeep HV, Sathish A, Basavegowda LH, Kumar TP, Kodimule SP (2024) Cardioprotective Potential of Cardiboost, a standardized extract from Terminalia arjuna bark against H2O2 Induced oxidative stress in H9c2 cardiomyocytes. J Young Pharmacists 16:10–16

    Article  Google Scholar 

  4. Choudhury N, Raman R, Sampath S, Shukla A (2005) An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J Power Sources 143:1–8

    Article  CAS  Google Scholar 

  5. Hasegawa S, Shimotani K, Kishi K, Watanabe H (2005) Electricity generation from decomposition of hydrogen peroxide. Electrochem Solid-State Lett 8:A119–A121

    Article  CAS  Google Scholar 

  6. Baeyens W, Nakashima K, Imai K, Ling BL, Tsukamoto Y (1989) Development of chemiluminescence reactions in biomedical analysis. J Pharm Biomed Anal 7:407–412

    Article  CAS  PubMed  Google Scholar 

  7. Giaretta JE, Duan H, Oveissi F, Farajikhah S, Dehghani F, Naficy S (2022) Flexible sensors for hydrogen peroxide detection: a critical review. ACS Appl Mater Interfaces 14:20491–20505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fusco G, Bollella P, Mazzei F, Favero G, Antiochia R, Tortolini C (2016) Catalase-based modified graphite electrode for hydrogen peroxide detection in different beverages. J Anal Methods Chem 2016

  9. Winterbourn CC (2013) The biological chemistry of hydrogen peroxide. Methods Enzymol 528:3–25

    Article  CAS  PubMed  Google Scholar 

  10. Klibanov AM (1983) Stabilization of enzymes against thermal inactivation. Adv Appl Microbiol 29:1–28

    Article  CAS  PubMed  Google Scholar 

  11. Mori I, Takasaki K, Fujita Y, Matsuo T (1998) Selective and sensitive fluorometric determinations of cobalt (II) and hydrogen peroxide with fluorescein-hydrazide. Talanta 47:631–637

    Article  CAS  PubMed  Google Scholar 

  12. Rapoport R, Hanukoglu I, Sklan D (1994) A fluorometric assay for hydrogen peroxide, suitable for NAD (P) H-dependent superoxide generating redox systems. Anal Biochem 218:309–313

    Article  CAS  PubMed  Google Scholar 

  13. Klassen NV, Marchington D, McGowan HC (1994) H2O2 determination by the I3-method and by KMnO4 titration. Anal Chem 66:2921–2925

    Article  CAS  Google Scholar 

  14. Zhu M, Huang X, Liu L, Shen H (1997) Spectrophotometric determination of hydrogen peroxide by using the cleavage of eriochrome black T in the presence of peroxidase. Talanta 44:1407–1412

    Article  CAS  PubMed  Google Scholar 

  15. Effkemann S, Pinkernell U, Karst U (1998) Peroxide analysis in laundry detergents using liquid chromatography. Anal Chim Acta 363:97–103

    Article  CAS  Google Scholar 

  16. Okamura K, Gamo T, Obata H, Nakayama E, Karatani H, Nozaki Y (1998) Selective and sensitive determination of trace manganese in sea water by flow through technique using luminol–hydrogen peroxide chemiluminescence detection. Anal Chim Acta 377:125–131

    Article  CAS  Google Scholar 

  17. Yuan J, Shiller AM (1999) Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Anal Chem 71:1975–1980

    Article  CAS  Google Scholar 

  18. Jönsson G, Gorton L (1989) An electrochemical sensor for hydrogen peroxide based on peroxidase adsorbed on a spectrographic graphite electrode. Electroanalysis 1:465–468

    Article  Google Scholar 

  19. Wang J (2005) Carbon-Nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  20. Liu C-Y, Hu J-M (2009) Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens Bioelectron 24:2149–2154

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Wang L, Wu Q, Chen Z, Lin X (2014) A nonenzymatic hydrogen peroxide sensor based on Au–Ag nanotubes and chitosan film. J Electroanal Chem 735:19–23

    Article  CAS  Google Scholar 

  22. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42:4098–4140

    Article  CAS  PubMed  Google Scholar 

  23. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Zhang J-J, Xuan J, Jiang L-P, Zhu J-J (2010) Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem Commun 12:777–780

    Article  CAS  Google Scholar 

  25. Narang J, Chauhan N, Pundir C (2011) A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified au electrode. Analyst 136:4460–4466

    Article  CAS  PubMed  Google Scholar 

  26. Hosseini H, Rezaei SJT, Rahmani P, Sharifi R, Nabid MR, Bagheri A (2014) Nonenzymatic glucose and hydrogen peroxide sensors based on catalytic properties of palladium nanoparticles/poly (3, 4-ethylenedioxythiophene) nanofibers. Sens Actuators B 195:85–91

    Article  CAS  Google Scholar 

  27. Kafi A, Wu G, Chen A (2008) A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 24:566–571

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Du Z, Liu S, Hao Q, Wang Y, Li Q, Wang T (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82:1637–1641

    Article  CAS  PubMed  Google Scholar 

  29. Habibi B, Jahanbakhshi M (2014) A novel nonenzymatic hydrogen peroxide sensor based on the synthesized mesoporous carbon and silver nanoparticles nanohybrid. Sens Actuators B 203:919–925

    Article  CAS  Google Scholar 

  30. Azizi SN, Ghasemi S, Samadi-Maybodi A, Ranjbar-Azad M (2015) A new modified electrode based on Ag-doped mesoporous SBA-16 nanoparticles as non-enzymatic sensor for hydrogen peroxide. Sens Actuators B 216:271–278

    Article  CAS  Google Scholar 

  31. Babu KJ, Nahm KS, Hwang YJ (2014) A facile one-pot green synthesis of reduced graphene oxide and its composites for non-enzymatic hydrogen peroxide sensor applications. RSC Adv 4:7944–7951

    Article  Google Scholar 

  32. Wei-Wei W, Yu Q, ZHANG S-P, Jia-Wei L, Xiao-Quan L, Xiu-Hui L (2014) A hydrogen peroxide sensor based on Pt@ au nanoparticles loading to polyethyleneimine functionalized carbon nanotubes. Chin J Anal Chem 42:835–841

    Article  Google Scholar 

  33. Abed SH, Madhi RA, Heydaryan K, F Shamkhi A (2024) Green synthesis of gold-doped ZnFe2O4 nanoparticles using Crataegus monogyna leaf extract: characterization, antibacterial, and efficient degradation of methylene blue and eriochrome black T pollutants. Biomass Convers Biorefin 1–11

  34. Kurowska E, Brzózka A, Jarosz M, Sulka G, Jaskuła M (2013) Silver nanowire array sensor for sensitive and rapid detection of H 2 O 2. Electrochim Acta 104:439–447

    Article  CAS  Google Scholar 

  35. Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    Article  CAS  Google Scholar 

  36. He S, Chen Z, Yu Y, Shi L (2014) A novel non-enzymatic hydrogen peroxide sensor based on poly-melamine film modified with platinum nanoparticles. RSC Adv 4:45185–45190

    Article  CAS  Google Scholar 

  37. Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360:463–470

    Article  CAS  PubMed  Google Scholar 

  38. Ghazi RA, Jasim AS, Heydaryan K, Khojasteh H, Mohammadalizadeh M, Kadhim SA, Eskandari V (2024) Biosynthesis of Ag-Doped CuO nanoparticles using heracleum persicum extract for enhanced antibacterial and photocatalytic dye degradation properties. Plasmonics 1–12

  39. Karooby E, Sahbafar H, Heris MH, Hadi A, Eskandari V (2023) Identification of low concentrations of flucytosine drug using a surface-enhanced Raman scattering (SERS)-active filter paper substrate. Plasmonics 1–9

  40. Abed SH, Shamkhi AF, Heydaryan K, Mohammadalizadeh M, Sajadi SM (2024) Sol-Gel Pechini preparation of CuEr2TiO6 nanoparticles as highly efficient photocatalyst for visible light degradation of acid red 88. Ceramics International

    Book  Google Scholar 

  41. Sahbafar H, Mehmandoust S, Heydaryan K, Zeinalizad L, Abbas MH, Hayder N, Hadi A, Eskandari V (2023) Surface-Enhanced Raman Scattering (SERS) and Finite Difference Time Domain (FDTD) investigations of plasmonic and flexible filter papers for the detection of the molecular vibrations of amoxicillin. Plasmonics 1–8

  42. Li T, Wang T, Qu G, Liang D, Hu S (2017) Synthesis and photocatalytic performance of reduced graphene oxide–TiO 2 nanocomposites for orange II degradation under UV light irradiation. Environ Sci Pollut Res 24:12416–12425

    Article  CAS  Google Scholar 

  43. Surendran DK, Xavier MM, Viswanathan VP, Mathew S (2017) Synthesis of a ternary Ag/RGO/ZnO nanocomposite via microwave irradiation and its application for the degradation of rhodamine B under visible light. Environ Sci Pollut Res 24:15360–15368

    Article  CAS  Google Scholar 

  44. Nidheesh PV (2017) Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environ Sci Pollut Res 24:27047–27069

    Article  CAS  Google Scholar 

  45. Heydaryan K, Almasi Kashi M, Sharifi N (2019) Reduced graphene oxide/magnetite nanocomposites: Synthesis and characterization. Nanoscale 6:49–54

    Google Scholar 

  46. Huang Z, Zhou H, Li C, Zeng F, Fu C, Kuang Y (2012) Preparation of well-dispersed PdAu bimetallic nanoparticles on reduced graphene oxide sheets with excellent electrochemical activity for ethanol oxidation in alkaline media. J Mater Chem 22:1781–1785

    Article  CAS  Google Scholar 

  47. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  48. Sahbafar H, Mehmandoust S, Zeinalizad L, Mohsennezhad A, Abbas MH, Hadi A et al (2023) Prepared plasmonic glass substrates via electrodeposition for detecting trace glucose: SERS, DFT, and FDTD investigations. Plasmonics 1–10

  49. Rao C, Sood A, Voggu R, Subrahmanyam K (2010) Some novel attributes of graphene. J Phys Chem Lett 1:572–580

    Article  CAS  Google Scholar 

  50. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  PubMed  Google Scholar 

  51. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1:: high-yield synthesis and flexibility of the particles. Carbon 42:2929–2937

    CAS  Google Scholar 

  52. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based Polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  53. Li J, Liu C (2010) Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 2010:1244–1248

    Article  Google Scholar 

  54. Fu X, Bei F, Wang X, O’Brien S, Lombardi JR (2010) Excitation profile of surface-enhanced Raman scattering in graphene–metal nanoparticle based derivatives. Nanoscale 2:1461–1466

    Article  CAS  PubMed  Google Scholar 

  55. Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag–graphene-based nanocomposites. Small 5:2253–2259

    Article  CAS  PubMed  Google Scholar 

  56. Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B 83:16–22

    Article  CAS  Google Scholar 

  57. Subrahmanyam K, Manna AK, Pati SK, Rao C (2010) A study of graphene decorated with metal nanoparticles. Chem Phys Lett 497:70–75

    Article  CAS  Google Scholar 

  58. Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC (2010) Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4:5617–5626

    Article  CAS  PubMed  Google Scholar 

  59. Mohsennezhad A, Aminsaremi H, Zeinalizad L, Eskandari V, Sahbafar H (2024) Simply developed Surface-Enhanced Raman Scattering (SERS) sensors for ultra-sensitive detection of lindane pesticide. Plasmonics 1–9

  60. Welch C, Banks C, Simm A, Compton R (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382:12–21

    Article  CAS  PubMed  Google Scholar 

  61. Honda M, Kodera T, Kita H (1986) Electrochemical behavior of H2O2 at Ag in HClO4 aqueous solution. Electrochim Acta 31:377–383

    Article  CAS  Google Scholar 

  62. Wang Q, Li M, Szunerits S, Boukherroub R (2014) Environmentally friendly reduction of graphene oxide using tyrosine for nonenzymatic amperometric h2o2 detection. Electroanalysis 26:156–163

    Article  CAS  Google Scholar 

  63. Xu F, Deng M, Li G, Chen S, Wang L (2013) Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing. Electrochim Acta 88:59–65

    Article  CAS  Google Scholar 

  64. Liu S, Tian J, Wang L, Li H, Zhang Y, Sun X (2010) Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 43:10078–10083

    Article  CAS  Google Scholar 

  65. Ngamaroonchote A, Sanguansap Y, Wutikhun T, Karn-Orachai K (2020) Highly branched gold–copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide. Microchim Acta 187:1–12

    Article  Google Scholar 

  66. Hosu IS, Wang Q, Vasilescu A, Peteu SF, Raditoiu V, Railian S, Zaitsev V, Turcheniuk K, Wang Q, Li M (2015) Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide. RSC Adv 5:1474–1484

    Article  CAS  Google Scholar 

  67. Shafa M, Ahmad I, Hussain S, Asif M, Pan Y, Zairov R, Alothman AA, Ouladsmane M, Ullah Z, Ullah N (2023) Ag-Cu nanoalloys: an electrochemical sensor for H2O2 detection. Surf Interfaces 36:102616

    Article  CAS  Google Scholar 

  68. Jeffery G, Bassett J, Mendham J, Denney R (1989) Titrimetric analysis. Vogel’s textbook of quantitative chemical analysis, 5th edition. Longman Scientific and Technical, Essex, UK, pp. 372–373

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

K.H. wrote the main manuscript text and prepared all figures. M.A.K. supervised the manuscript. A.H.M. edited the manuscript. H.K and V.E. reviewed the manuscript.

Corresponding author

Correspondence to Mohammad Almasi Kashi.

Ethics declarations

Consent for Publication

By submitting the manuscript, the authors understand that the material presented in this manuscript has not been published before, nor has it been submitted for publication to another journal. The corresponding author attests that this study has been approved by all the co-authors concerned.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashi, M.A., Heydaryan, K., Khojasteh, H. et al. Green Synthesis of Ag NPs/rGO Nanocomposite for Use as a Non-enzymatic Sensor of H2O2. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02330-4

Keywords

Navigation