Skip to main content
Log in

Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Three-dimensional nanoporous copper (NPC) was fabricated by dealloying ribbons of an Al-Cu alloy. NPC possesses a clean metal surface and high electrical conductivity. Subsequently, a non-enzymatic electrochemical sensor was obtained by modifying a glassy carbon electrode with nanocomposites containing nanoporous copper and carbon black (NPC-CB) in a nafion matrix. The sensor, if operated at a working voltage of 0.6 V (vs. SCE) in 50 mM NaOH solution, has a linear analytical range that extends from 6.0 μM to 3.4 mM of glucose, and a 2.6 μM detection limit (at an S/N ratio of 3). It also shows good selectivity over ascorbic acid, uric acid, dopamine and carbohydrates (fructose, saccharose, and maltose). The sensor also has a rapid amperometric response to hydrogen peroxide which can be quantified with a 1.2 μM detection limit.

Nanoporous copper (NPC) was fabricated by dealloying ribbons of an Al-Cu alloy. NPC exhibits three-dimensional nanoporous structure. A nanocomposite made from NPC and carbon black in a nafion matrix shows good sensing performance toward glucose and H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505

    Article  CAS  Google Scholar 

  2. Chen XM, Wu GH, Cai ZX, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705

    Article  CAS  Google Scholar 

  3. Zhao L, Wu GH, Cai ZX, Zhao TT, Yao QH, Chen X (2015) Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim Acta 182:2055–2060

    Article  CAS  Google Scholar 

  4. Mei H, Wu WQ, Yu BB, Li YB, Wu HM, Wang SG, Xia QH (2015) Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported Co@ Pt core-shell nanoparticles. Microchim Acta 182:2055–2060

    Article  Google Scholar 

  5. Rui Q, Komori K, Tian Y, Liu HQ, Luo YP, Sakai Y (2010) Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Anal Chim Acta 670:57–62

    Article  CAS  Google Scholar 

  6. Zhai DY et al. (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 4:3540–3546

    Article  Google Scholar 

  7. Wang GF, He XP, Wang LL, Gu AX, Huang Y, Fang B, Geng BY, Zhang XJ (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186

    Article  CAS  Google Scholar 

  8. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  9. Guo C, Huo H, Han X, Xu C, Li H (2014) Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing. Anal Chem 86:876–883

    Article  CAS  Google Scholar 

  10. Chen XM, Tian XT, Zhao LM, Huang ZY (2014) Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes. Microchim Acta 181:783–789

    Article  CAS  Google Scholar 

  11. Wang J, Zhang WD (2011) Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose. Electrochim Acta 56:7510–7516

    Article  CAS  Google Scholar 

  12. Zhuang ZJ, Su XD, Yuan HY, Sun Q, Xiao D, Choi MMF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126–132

    Article  CAS  Google Scholar 

  13. Reitz E, Jia W, Gentile M, Wang Y, Lei Y (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20:2482–2486

    Article  CAS  Google Scholar 

  14. Sahay R, Sundaramurthy J, Kumar PS, Thavasi V, Mhaisalkar SG, Ramakrishna S (2012) Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. J Solid State Chem 186:261–267

    Article  CAS  Google Scholar 

  15. Zhang YC, Su L, Dan M (2012) Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron 31:426–432

    Article  CAS  Google Scholar 

  16. Liu GY, Zheng BZ, Jiang YS, Cai YQ (2012) Improvement of sensitive CuO NFs-ITO nonenzymatic glucose sensor based on in situ electrospun fiber. Talanta 101:24–31

    Article  CAS  Google Scholar 

  17. Xu CX, Wang LQ, Wang RY, Wang K, Zhang Y, Tian F, Ding Y (2009) Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance. Adv Mater 21:2165–2169

    Article  CAS  Google Scholar 

  18. Yu F, Ahl S, Caminade AM, Majoral JP, Knoll W, Erlebacher J (2006) Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal Chem 78:7346–7350

    Article  CAS  Google Scholar 

  19. Huang JF, Sun IW (2005) Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-Cysteine monolayers. Adv Funct Mater 15:989–994

    Article  CAS  Google Scholar 

  20. Smith AJ, Tran T, Wainwright MS (1999) Kinetics and mechanism of the preparation of Raney® copper. J Appl Electrochem 29:1085–1094

    Article  CAS  Google Scholar 

  21. Liu W, Zhang S, Li N, Zheng J, Xing Y (2012) Fabrication and dealloying behavior of monolithic nanoporous copper ribbons with bimodal channel size distributions. J Mater Sci Technol 8:693–699

    Article  Google Scholar 

  22. Li M, Zhou YZ, Geng HR (2012) Fabrication of nanoporous copper ribbons by dealloying of Al-Cu alloys. J Porous Mater 19:791–796

    Article  CAS  Google Scholar 

  23. Xu CX, Wang JP, Zhou JH (2013) Nanoporous PtNi alloy as an electrochemical sensor for ethanol and H2O2. Sensors Actuators B 182:408–415

    Article  CAS  Google Scholar 

  24. Xu CX, Sun FL, Gao H, Wang JP (2013) Nanoporous platinum-cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Anal Chim Acta 780:20–27

    Article  CAS  Google Scholar 

  25. Wang JP, Gao H, Sun FL, Xu CX (2014) Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors Actuators B 191:612–618

    Article  CAS  Google Scholar 

  26. Bai YF, Xu TB, Luong JHT, Cui HF (2014) Direct electron transfer of glucose oxidase-boron doped diamond interface: A new solution for a classical problem. Anal Chem 86:4910–4918

    Article  CAS  Google Scholar 

  27. Zhou J, Liao C, Zhang L, Wang Q, Tian Y (2014) Molecular hydrogel-stabilized enzyme with facilitated electron transfer for determination of H2O2 Released from live cells. Anal Chem 86:4395–4401

    Article  CAS  Google Scholar 

  28. Male KB, Hrapovic S, Liu YL, Wang DS, Luong JHT (2004) Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 516:35–41

    Article  CAS  Google Scholar 

  29. Huang T, Lin K, Tung S, Cheng T, Chang I, Hsieh Y, Lee C, Chiu H (2009) Glucose sensing by electrochemically grown copper nanobelt electrode. J Electroanal Chem 636:123–127

    Article  CAS  Google Scholar 

  30. Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem 363:43–150

    Google Scholar 

  31. Liu MM, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212

    Article  CAS  Google Scholar 

  32. Guo SJ, Wen D, Dong SJ, Wang E (2009) Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta 77:1510–1517

    Article  CAS  Google Scholar 

  33. Zhang KY, Zhang N, Cai H, Wang C (2012) A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers. Microchim Acta 176:137–142

    Article  CAS  Google Scholar 

  34. Gu AX, Wang GF, Zhang XJ, Fang B (2010) Synthesis of CuO nanoflower and its application as a H2O2 sensor. Bull Mater Sci 33:17–20

    Article  CAS  Google Scholar 

  35. Vogel AI (1989) Textbook of Quantitative Chemical Analysis. Longman United Kingdom

Download references

Acknowledgments

We greatly appreciate the support of the National Natural Science Foundation of China (20905010), Jiangsu Provincial Natural Science Foundation (BK20131191 and BK20140416), Qing Lan Project (SZ2014005) and Suzhou Science and Technology Project (SYN201302, SYN201515). The work is also supported by Hebei Provincial Natural Science Foundation (B2011205079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjing Cui.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary materials

ESM 1

(DOC 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, L., Zhang, P., Chen, J. et al. Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion. Microchim Acta 183, 1359–1365 (2016). https://doi.org/10.1007/s00604-016-1764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1764-0

Keywords

Navigation