Skip to main content
Log in

Enhanced Non-enzymatic amperometric sensing of glucose using Co(OH)2 nanorods deposited on a three dimensional graphene network as an electrode material

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the synthesis of cobalt dihydroxide [Co(OH)2] nanorods and their deposition on a 3-dimensional graphene network via chemical bath deposition. The structural characterization reveals deposited Co(OH)2 to consist of flower-like nanorods on a 3-dimensional graphene foam. The nanocomposite was used for glucose sensing by electrocatalytic oxidation of glucose in 1 M KOH solution. Cyclic voltammetry and amperometric studies revealed a high sensitivity for glucose (3.69 mA mM−1 cm−2) and a 16 nM detection limit. The nanocomposite offers a large effective surface (11.4 cm2) and is very selective for glucose over potentially interfering materials such as dopamine, ascorbic acid, lactose, fructose and urea, not the least due to a relatively low working potential of 0.6 V (vs. Ag/AgCl). The high sensitivity, low detection limit and very good selectivity of free-standing nanocomposite electrodes are attributed to the synergistic effect of (a) the good electrocatalytic activity of the NRs, and (b) the large surface area with high conductivity offered by the 3D graphene foam.

Cobalt hydroxide [Co(OH)2] nanorods were deposited on three dimensional graphene (3DG) by a chemical bath deposition method, and the resulting material was used as an electrode for non-enzymatic and specific sensing of glucose in 1 M KOH solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181(7–8):689–705

    Article  CAS  Google Scholar 

  2. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180(3–4):161–186

    Article  CAS  Google Scholar 

  3. Jiang L-C, Zhang W-D (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25(6):1402–1407

    Article  CAS  Google Scholar 

  4. Shackery I, Patil U, Pezeshki A, Shinde NM, Im S, Jun SC (2016) Copper hydroxide nanorods decorated porous graphene foam electrodes for non-enzymatic glucose sensing. Electrochim Acta 191:954

    Article  CAS  Google Scholar 

  5. Chen J, Zhang W-D, Ye J-S (2008) Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem Commun 10(9):1268–1271

    Article  CAS  Google Scholar 

  6. Qiao N, Zheng J (2012) Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene. Microchim Acta 177(1–2):103–109

    Article  CAS  Google Scholar 

  7. Shackery I, Patil U, Song MJ, Sohn JS, Kulkarni S, Some S, Lee SC, Nam MS, Lee W, Jun SC (2015) Sensitivity enhancement in nickel hydroxide/3D-graphene as enzymeless glucose detection. Electroanalysis 27:2363–2370

    Article  CAS  Google Scholar 

  8. Lien C-H, Chen J-C, Hu C-C, Wong DS-H (2014) Cathodic deposition of binary nickel-cobalt hydroxide for non-enzymatic glucose sensing. J Taiwan Inst Chem Eng 45(3):846–851

    Article  CAS  Google Scholar 

  9. Heli H, Yadegari H (2010) Nanoflakes of the cobaltous oxide, CoO: synthesis and characterization. Electrochim Acta 55(6):2139–2148

    Article  CAS  Google Scholar 

  10. Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3213

    Article  CAS  Google Scholar 

  11. Scavetta E, Ballarin B, Tonelli D (2010) A cheap amperometric and optical sensor for glucose determination. Electroanalysis 22(4):427–432

    Article  CAS  Google Scholar 

  12. Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26(2):542–548

    Article  CAS  Google Scholar 

  13. Mei H, Wu W, Yu B, Li Y, Wu H, Wang S, Xia Q (2015) Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported Co@ Pt core-shell nanoparticles. Microchim Acta 182(11–12):1869–1875

  14. Zhao L, Wu G, Cai Z, Zhao T, Yao Q, Chen X (2015) Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim Acta 182(11–12):2055–2060

    Article  CAS  Google Scholar 

  15. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428

    Article  CAS  Google Scholar 

  16. Steiner M-S, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40(9):4805–4839

    Article  CAS  Google Scholar 

  17. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    Article  CAS  Google Scholar 

  18. Patil UM, Nam MS, Sohn JS, Kulkarni SB, Shin R, Kang S, Lee S, Kim JH, Jun SC (2014) Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors. J Mater Chem A 2(44):19075–19083

    Article  CAS  Google Scholar 

  19. Patil U, Lee SC, Sohn J, Kulkarni S, Gurav K, Kim J, Kim JH, Lee S, Jun SC (2014) Enhanced symmetric supercapacitive performance of Co (OH)2 nanorods decorated conducting porous graphene foam electrodes. Electrochim Acta 129:334–342

    Article  CAS  Google Scholar 

  20. Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

    Article  CAS  Google Scholar 

  21. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1):47–57

    Article  CAS  Google Scholar 

  22. Wang L, Dong ZH, Wang ZG, Zhang FX, Jin J (2013) Layered α‐Co (OH) 2 Nanocones as electrode materials for Pseudocapacitors: understanding the effect of interlayer space on electrochemical activity. Adv Funct Mater 23(21):2758–2764

    Article  CAS  Google Scholar 

  23. Pouchert CJ (1985) The aldrich library of FT-IR spectra. Aldrich Chemical Company, Milwaukee

    Google Scholar 

  24. Jayashree R, Kamath PV (1999) Electrochemical synthesis of α-cobalt hydroxide. J Mater Chem 9(4):961–963

    Article  CAS  Google Scholar 

  25. Fu Z-W, Wang Y, Zhang Y, Qin Q-Z (2004) Electrochemical reaction of nanocrystalline Co 3 O 4 thin film with lithium. Solid State Ionics 170(1):105–109

    Article  CAS  Google Scholar 

  26. Petitto SC, Marsh EM, Carson GA, Langell MA (2008) Cobalt oxide surface chemistry: the interaction of CoO (100), Co 3 O 4 (110) and Co 3 O 4 (111) with oxygen and water. J Mol Catal A Chem 281(1):49–58

    Article  CAS  Google Scholar 

  27. Tyagi M, Tomar M, Gupta V (2014) Glad assisted synthesis of NiO nanorods for realization of enzymatic reagentless urea biosensor. Biosens Bioelectron 52:196–201

    Article  CAS  Google Scholar 

  28. Jagadale A, Jamadade V, Pusawale S, Lokhande C (2012) Effect of scan rate on the morphology of potentiodynamically deposited β-Co (OH) 2 and corresponding supercapacitive performance. Electrochim Acta 78:92–97

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York

    Google Scholar 

  30. Li G, Liao J, Hu G, Ma N, Wu P (2005) Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosens Bioelectron 20(10):2140–2144

    Article  CAS  Google Scholar 

  31. Song MJ, Kim JH, Lee SK, Lim DS, Hwang SW, Whang D (2011) Analytical characteristics of electrochemical biosensor using Pt‐dispersed graphene on boron doped diamond electrode. Electroanalysis 23(10):2408–2414

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Priority Research Centers Program (2009–0093823), the Korean Government (MSIP) (No. 2015R1A5A1037668) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST), and the Korea Research Fellowship Program funded by the Ministry of Science, ICT and Future Planning through the National Research Foundation of Korea (2015-11-1063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Chan Jun.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Iman Shackery and Umakant Patil contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shackery, I., Patil, U., Pezeshki, A. et al. Enhanced Non-enzymatic amperometric sensing of glucose using Co(OH)2 nanorods deposited on a three dimensional graphene network as an electrode material. Microchim Acta 183, 2473–2479 (2016). https://doi.org/10.1007/s00604-016-1890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1890-8

Keywords

Navigation