Skip to main content
Log in

Expression of ethylene response genes during persimmon fruit astringency removal

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Thirteen ethylene signaling related genes were isolated and studied during ripening of non-astringent ‘Yangfeng’ and astringent ‘Mopan’ persimmon fruit. Some of these genes were characterized as ethylene responsive. Treatments, including ethylene and CO2, had different effects on persimmon ripening, but overlapping roles in astringency removal, such as increasing the reduction in levels of soluble tannins. DkERS1, DkETR2, and DkERF8, may participate in persimmon fruit ripening and softening. The expression patterns of DkETR2, DkERF4, and DkERF5 had significant correlations with decreases in soluble tannins in ‘Mopan’ persimmon fruit, suggesting that these genes might be key components in persimmon fruit astringency removal and be the linkage between different treatments, while DkERF1 and DkERF6 may be specifically involved in CO2 induced astringency removal. The possible roles of ethylene signaling genes in persimmon fruit astringency removal are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ETR:

Ethylene receptor

CTR:

Constitutive triple response

EIL:

EIN3-like

ERF:

Ethylene responsive factor

PCNA:

Pollination-constant non-astringency

PCA:

Pollination-constant astringency

PDC:

Pyruvate decarboxylase

PVNA:

Pollination-variant non-astringency

PVA:

Pollination-variant astringency

ADH:

Alcohol dehydrogenase

1-MCP:

1-Methylcyclopropene

HRE:

Hypoxia responsive ERF

References

  • Akagi T, Ikegami A, Tsujimoto T, Kobayashi S, Sato A, Kono A, Yonemori K (2009) DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol 151:2028–2045

    Article  PubMed  CAS  Google Scholar 

  • Akagi T, Ikegami A, Yonemori K (2010) DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation. Planta 232:1045–1059

    Article  PubMed  CAS  Google Scholar 

  • Akagi T, Katayama-Ikegami A, Yonemori K (2011) Proanthocyanidin biosynthesis of persimmon (Diospyros kaki Thunb.) fruit. Sci Hortic 130:373–380

    Article  CAS  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26:92–105

    Article  CAS  Google Scholar 

  • Arnal L, Del Río MA (2004) Effect of cold storage and removal astringency on quality of persimmon fruit (Diospyros kaki, L.) cv. Rojo Brillante. Food Sci Technol Int 10:179–185

    Article  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Del Bubba M, Giordani E, Pippucci L, Cincinelli A, Checchini L, Galvan P (2009) Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J Food Compos Anal 22:668–677

    Article  CAS  Google Scholar 

  • El-Sharkawy I, Kim WS, EI-Kereamy A, Jayasankar S, Svircev AM, Brown DCW (2007) Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.). J Exp Bot 58:3631–3643

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy I, Sherif S, Mila I, Bouzayen M, Jayasankar S (2009) Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening. J Exp Bot 60:907–922

    Article  PubMed  CAS  Google Scholar 

  • Harima S, Nakano R, Yamauchi S, Kitano Y, Yamamoto Y, Inaba A, Kubota Y (2003) Extending shelf-life of astringent persimmon (Diospyros kaki Thunb.) fruit by 1-MCP. Postharvest Biol Technol 29:319–324

    Article  CAS  Google Scholar 

  • Hershkovitz V, Friedman H, Goldschmidt EE, Pesis E (2010) Ethylene regulation of avocado ripening differs between seeded and seedless fruit. Postharvest Biol Technol 56:138–146

    Article  CAS  Google Scholar 

  • Ikegami A, Eguchi S, Kitajima A, Inoue K, Yonemori K (2007) Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Sci 172:1037–1047

    Article  CAS  Google Scholar 

  • John-Karuppiah KJ, Burns JK (2010) Degreening behavior in ‘Fallglo’ and ‘Lee × Orlando’ is correlated with differential expression of ethylene signaling and biosynthesis genes. Postharvest Biol Technol 58:185–193

    Article  Google Scholar 

  • Kato K (1987) Astringency removal and ripening as related to temperature during the de-astringency by ethanol in persimmon fruits. J Jpn Soc Hortic Sci 55:489–509

    Google Scholar 

  • Kevany BM, Taylor MG, Klee HJ (2007) Fruit-specific suppression of the ethylene receptor LeETR4 results in early-ripening tomato fruit. Plant Biotech J 6:295–300

    Article  Google Scholar 

  • Li YC, Zhu BZ, Xu WT, Zhu HL, Chen AJ, Xie YH, Shao Y, Luo YB (2007) LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep 26:1999–2008

    Article  PubMed  CAS  Google Scholar 

  • Licausi F, van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62:302–315

    Article  PubMed  CAS  Google Scholar 

  • Lin ZF, Zhong SL, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  PubMed  CAS  Google Scholar 

  • Mathooko FM (1996) Regulation of ethylene biosynthesis in higher plants by carbon dioxide. Postharvest Biol Technol 7:1–26

    Article  CAS  Google Scholar 

  • Matsumoto T, Matsuzaki H, Takata K, Tsurunaga Y, Takahashi H, Kurahashi T, Maki S, Fujiwara K (2007) Inhibition of astringency removal in semidried Japanese persimmon fruit by 1-methylcyclopropene treatment. Hortscience 42:1493–1495

    CAS  Google Scholar 

  • Nakagawa T, Nakatsuka A, Yano K, Yasugahira S, Nakamura R, Sun N, Itai A, Suzuki T, Itamura H (2008) Expressed sequence tags from persimmon at different developmental stages. Plant Cell Rep 27:931–938

    Article  PubMed  CAS  Google Scholar 

  • Nakano R, Inoue S, Kubo Y, Inaba A (2002) Water stress-induced ethylene in the calyx triggers autocatalytic ethylene production and fruit softening in ‘Tonewase’ persimmon grown in a heated plastic-house. Postharvest Biol Technol 25:293–300

    Article  CAS  Google Scholar 

  • Nakano R, Ogura E, Kubo Y, Inaba A (2003) Ethylene biosynthesis in detached young persimmon fruit is initiated in calyx and modulated by water loss from the Fruit. Plant Physiol 131:276–286

    Article  PubMed  CAS  Google Scholar 

  • Oshida M, Yonemori K, Sugiura A (1996) On the nature of coagulated tannins in astringent-type persimmon fruit after an artificial treatment of astringency removal. Postharvest Biol Technol 8:317–327

    Article  CAS  Google Scholar 

  • Pang JH, Ma B, Sun HJ, Ortiz GI, Imanishi S, Sugaya S, Gemma H, Ezura H (2007) Identification and characterization of ethylene receptor homologs expressed during fruit development and ripening in persimmon (Diospyros kaki Thumb.). Postharvest Biol Technol 44:195–203

    Article  CAS  Google Scholar 

  • Pesis E (2005) The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol Technol 37:1–19

    Article  CAS  Google Scholar 

  • Pesis E, Ben-Arie R (1984) Involvement of acetaldehyde and ethanol accumulation during induced deastringency of persimmon fruits. J Food Sci 49:896–899

    Article  CAS  Google Scholar 

  • Ponce-Valadez M, Fellman SM, Giovannoni J, Gan SS, Watkins CB (2009) Differential fruit gene expression in two strawberry cultivars in response to elevated CO2 during storage revealed by a heterologous fruit microarray approach. Postharvest Biol Technol 51:131–140

    Article  CAS  Google Scholar 

  • Rasori A, Ruperti B, Bonghi C, Tonutti P, Ramina A (2002) Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. J Exp Bot 53:2333–2339

    PubMed  CAS  Google Scholar 

  • Salvador A, Cuquerella J, Martinez-Javega JM, Monterde A, Navarro P (2004) 1-MCP preserves the firmness of stored persimmon ‘Rojo Brillante’. J Food Sci 69:S69–S73

    Google Scholar 

  • Salvador A, Arnal L, Besada C, Larrea V, Quiles A, Pérez-Munuera I (2007) Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biol Technol 46:181–188

    Article  CAS  Google Scholar 

  • Sato-Nara K, Yuhashi KI, Higashi K, Hosoya K, Kubota M, Ezura H (1999) Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol 120:321–330

    Article  PubMed  CAS  Google Scholar 

  • Serrano J, Puupponen-Pimiä R, Dauer A, Aura AM, Saura-Calixto F (2009) Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53:S310–S329

    Article  PubMed  Google Scholar 

  • Sharma MK, Kuma R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genomics 284:455–475

    Article  PubMed  CAS  Google Scholar 

  • Tacken E, Ireland H, Gunaseelan K, Karunairetnam S, Wang D, Schultz K, Bowen J, Atkinson RG, Johnston JW, Putterill J, Hellens RP, Schaffer RJ (2010) The role of ethylene and cold temperature in the regulation of the apple polygalacturonase1 gene and fruit softening. Plant Physiol 153:294–305

    Article  PubMed  CAS  Google Scholar 

  • Taira S (1995) Astringency in persimmon. In: Linskens HF, Jackson JF (eds) Fruit analysis. Springer-Verlag, Berlin, pp 97–110

    Google Scholar 

  • Taira S, Ono M, Matsumoto N (1997) Reduction of persimmon astringency by complex formation between pectin and tannins. Postharvest Biol Technol 12:265–271

    Article  CAS  Google Scholar 

  • Taira S, Ikeda K, Ohkawa K (2001) Comparison of insolubility of tannins induced by acetaldehyde vapor in fruit of three types of astringent persimmon. J Jpn Soc Hortic Sci 48:684–687

    CAS  Google Scholar 

  • Tatsuki M, Hayama H, Nakamura Y (2009) Apple ethylene receptor protein concentrations are affected by ethylene, and differ in cultivars that have different storage life. Planta 230:407–417

    Article  PubMed  CAS  Google Scholar 

  • Tieman DM, Ciardi JA, Taylor MG, Klee HJ (2001) Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26:47–58

    Article  PubMed  CAS  Google Scholar 

  • Wang RZ, Yang Y, Li GC (1997) Chinese persimmon germplasm resources. Acta Hortic 436:43–50

    CAS  Google Scholar 

  • Wang A, Tan DM, Takahashi A, Li TZ, Harada T (2007) MdERFs, two ethylene-response factors involved in apple fruit ripening. J Exp Bot 58:3743–3748

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Zhang B, Li X, Xu CJ, Yin XR, Shan LL, Ferguson I, Chen KS (2010) Ethylene signal transduction elements involved in chilling injury in non-climacteric loquat fruit. J Exp Bot 61:179–190

    Article  PubMed  CAS  Google Scholar 

  • Watkins CB (2006) The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol Adv 24:389–409

    Article  PubMed  CAS  Google Scholar 

  • Woolf A, Ben-Arie R (2011) Persimmon (Diospyros kaki). In: Yahia EM (ed) Postharvest biology and technology of tropical and sub-tropical fruits, vol 4. Woodhead Publishing, UK, pp 166–193

    Chapter  Google Scholar 

  • Yamada M, Yamane H, Sato A, Hirakawa N, Wang RZ (1994) Variations in fruit ripening time, fruit weight and soluble solids content of oriental persimmon cultivars native to Japan. J Jpn Soc Hortic Sci 63:485–491

    Article  Google Scholar 

  • Yamada M, Taira S, Ohtsuki M, Sato A, Iwanami H, Yakushiji H, Wang RZ, Yang Y, Li GC (2002) Varietal differences in the ease of astringency removal by carbon dioxide gas and ethanol vapor treatments among Oriental astringent persimmons of Japanese and Chinese origin. Sci Hortic 94:63–72

    Article  CAS  Google Scholar 

  • Yan SC, Chen JY, Yu WM, Kuang JF, Chen WX, Li XP, Lu WJ (2011) Expression of genes associated with ethylene-signalling pathway in harvested banana fruit in response to temperature and 1-MCP treatment. J Sci Food Agric 91:650–657

    Article  PubMed  CAS  Google Scholar 

  • Yang CY, Hsu FC, Li JP, Wang NN, Shih MC (2011) The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol 156:202–212

    Article  PubMed  CAS  Google Scholar 

  • Yin XR, Chen KS, Allan AC, Wu RM, Zhang B, Lallu N, Ferguson IB (2008) Ethylene-induced modulation of genes associated with the ethylene signaling pathway in ripening kiwifruit. J Exp Bot 59:2097–2108

    Article  PubMed  CAS  Google Scholar 

  • Yin XR, Allan AC, Zhang B, Wu RM, Burdon J, Wang P, Ferguson IB, Chen KS (2009) Ethylene-related genes show a differential response to low temperature during ‘Hayward’ kiwifruit ripening. Postharvest Biol Technol 52:9–15

    Article  CAS  Google Scholar 

  • Yin XR, Allan AC, Chen KS, Ferguson IB (2010) Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol 153:1280–1292

    Article  PubMed  CAS  Google Scholar 

  • Yokotani N, Tamura S, Nakano R, Inaba A, Kubo Y (2003) Characterization of a novel tomato EIN3-like gene (LeEIL4). J Exp Bot 54:2775–2776

    Article  PubMed  CAS  Google Scholar 

  • Yonemori K, Suzuki Y (2008) Differences in three-dimensional distribution of tannin cells in flesh tissue between astringent and non-astringent type persimmon. Acta Hortic 833:119–124

    Google Scholar 

  • Yonemori K, Sugiura A, Yamada M (2000) Persimmon genetics and breeding. Plant Breed Rev 19:191–225

    Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZJ, Zhang HW, Quan RD, Wang XC, Huang RF (2009) Transcriptional regulation of ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365–377

    Article  PubMed  CAS  Google Scholar 

  • Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P (2008) Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. J Exp Bot 59:2781–2791

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. J. Zhang (Beijing University of Agriculture, China) for support on collection of ‘Mopan’ fruit. This research was supported by the National Natural Science Foundation of China (no. 31030052, no. 31101507), the Program for Key Innovative Research Team of Zhejiang Province (no. 2009R50036), the Special Fund for Agro-scientific Research in the Public Interest (no. 201203047), the 111 project, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-song Chen.

Additional information

X. Yin and Y. Shi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Xr., Shi, Yn., Min, T. et al. Expression of ethylene response genes during persimmon fruit astringency removal. Planta 235, 895–906 (2012). https://doi.org/10.1007/s00425-011-1553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1553-2

Keywords

Navigation