Skip to main content

Advertisement

Log in

LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

To study the function of LeERF1 in ethylene triple response on etiolated seedling, plant development and fruit ripening and softening, LeERF1 gene was introduced into tomato (Lycopersicon esculentum cv. No. 4 Zhongshu) through Agrobacterium-mediated transformation. The sense LeERF1 and anti-sense LeERF1 transgenic tomato were obtained. Overexpression of LeERF1 in tomato caused the typical ethylene triple response on etiolated seedling. In the adult stage, 35S::LeERF1 resulted in morphological changes in the leaves of the LeERF1-sn lines. Anti-sense LeERF1 fruits had longer shelf life compared with wild-type tomato. The results of this manuscript indicated that LeERF1 positively mediated the ethylene signals, while the function of LeERF1 was verified for the first time to be positively related with ethylene triple response on etiolated seedling, plant development and fruit ripening and softening using LeERF1-sn, wt and LeERF1-as tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrews JM, Li SL (1995) Cell wall hydrolytic enzyme activity during development of non-climacteric sweet cherry (Prunus avium) fruit. J Hortic Sci 70(4):561–567

    Google Scholar 

  • Agharbaoui Z, Greer AF, Tabaeizadeh Z (1995) Transformation of the wild tomato Lycopersicon chilense Dun. by Agrobacterium tumefaciens. Plant Cell Rep 15:102–105

    Article  CAS  Google Scholar 

  • Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genomewide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Anna NS, Jose MA (2005) Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs. Physiol Plant 123:195–206

    Article  Google Scholar 

  • Bleecker AB (1999) Ethylene perception and signalling: an evolutionary perspective. Trends Plant Sci 4:269–274

    Article  PubMed  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Bleecker A, Estelle M, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. J Anal Biochem 72:248–256

    Article  CAS  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    PubMed  CAS  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    Article  PubMed  CAS  Google Scholar 

  • David AB, Mark HH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    Article  Google Scholar 

  • Feng JX, Liu D, Pan Y, Gong W, Ma L-G, Luo JC, Deng XW, Zhu YX (2005) An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol 59:853–868

    Article  PubMed  CAS  Google Scholar 

  • Fernando N, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101(11):3985–3990

    Article  CAS  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    Article  PubMed  CAS  Google Scholar 

  • Gregory TW, Margaret GR, Jone GS (1988) A procedure for the small-scale isolation of plant suitable for RNA blot analysis. Anal Biochem 172:279–283

    Article  Google Scholar 

  • Guo HW, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  PubMed  CAS  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    Article  PubMed  CAS  Google Scholar 

  • Guzman P, Ecker J (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    Article  PubMed  CAS  Google Scholar 

  • Handfiel KA, Bennett AB (1998) Polygalacturonases: many genes in search of a function. Plant Physiol 117:337–343

    Article  Google Scholar 

  • Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plants. J Biol Chem 273:26857–26861

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Zhang Z, Zhang X, Zhang H, Huang D, Huang R (2004) Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Lett 573:110–116

    Article  PubMed  CAS  Google Scholar 

  • Jimenez JA, Rodriguez D, Calvo AP, Mortensen LC, Nicolas G, Nicolas C (2005) Expression of a transcription factor (FsERF1) involved in ethylene signalling during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant 125:373–380

    Article  CAS  Google Scholar 

  • Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32:227–254

    Article  PubMed  CAS  Google Scholar 

  • Kausch KD, Handa AK (1997) Molecular cloning of a ripening-specific lipoxygenase and its expression during wild-type and mutant tomato fruit development. Plant Physiol 113:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15(1):165–78

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Brommonschenkel S, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Mondal K, Sharma NS, Malhota SP, Dhawan K, Singh R (2004) Antioxidant systems in ripening tomato fruits. Biol Plant 48(1):49–53

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays in tobacco tissue cultures. Physiol Plant 15:473–493

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    Article  PubMed  CAS  Google Scholar 

  • Onate-Sanchez L, Singh KB (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128:1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Park J.M, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Picton S, Gray J, Barton S, AbuBakar U, Lowe A, Grierson D (1993) cDNA cloning and characterisation of novel ripening-related mRNAs with altered patterns of accumulation in the ripening inhibitor (rin) tomato ripening mutant. Plant Mol Biol 23:193–207

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Zuo K, Zhao J, Ling H, Cao Y, Qiu C, Li F, Sun X, Tang K (2006) Overexpression of GbERF confers alteration of ethylene-responsive gene expression and enhanced resistance to Pseudomonas syringae in trandgenic tobacco. J Biosci 31(2):255–263

    Article  PubMed  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–13

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Riley JCM, Willemot C, Thompson JE (1996) Lipoxygenase and hydroperoxide lyase activities in ripening tomato fruit. Postharvest Biol Technol 7:97–107

    Article  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSEFACTOR1. Gen Dev 12:3703–3714

    CAS  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeaty DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Sue PL, Grant B, Bernard RB (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15(1):8–15

    Article  Google Scholar 

  • Surrey K (1963) Spectrophotometric method for determination of lipoxidase activity. Plant Physiol 39:65–70

    Article  Google Scholar 

  • Tieman DM, Ciardi JA, Taylor MG, Klee HJ (2001) Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26(1):47–58

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004) Ectopic over-expression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55:183–192

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz E, Scott JW, Shewfelt RL (2002) Effects of harvesting maturity and off-plant ripening on the activties of lipoxygenase, hydroperoxide lyase, and alcohol dehydrogenase enzymes in fresh tomato. J Food Biochem 26:443–457

    Article  CAS  Google Scholar 

  • Yu BY, Zhu BZ, Luo YB (2004) Gene cloning and sequence analysis of LeERF1 and LeERF2 in tomato fruit. J Agric Biotechnol 12(2):132–137

    Google Scholar 

  • Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang XC, Huang R (2004) Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol 55:825–834

    PubMed  CAS  Google Scholar 

  • Zhang H, Zhu B, Yu B, Hao Y, Fu D, Xu W, Luo Y (2005a) Cloning and DNA-binding properties of ethylene response factor, LeERF1 and LeERF2, in tomato. Biotechnol Lett 27:423–428

    Article  CAS  Google Scholar 

  • Zhang X, Zhang Z, Chen J, Chen Q, Wang XC, Huang R (2005b) Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta 222:494–50

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Li W, Chen J, Yang Y, Zhang Z, Zhang H, Wang XC, Huang R (2007) Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Plant Mol Biol 63:63–71

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Tang X, Martin GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16(11):3207–3218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (No. 30600421, No. 30371004 and No. 30430490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunbo Luo.

Additional information

Communicated by W.-H. Wu.

Yingcong Li and Benzhong Zhu have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhu, B., Xu, W. et al. LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep 26, 1999–2008 (2007). https://doi.org/10.1007/s00299-007-0394-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0394-8

Keywords

Navigation