Skip to main content
Log in

Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Crickets use acoustic communication for pair formation. Males sing with rhythmical movements of their wings and the mute females approach the singing males by phonotaxis. Females walking on a trackball rapidly steer towards single sound pulses when exposed to split-song paradigms. Their walking path emerges from consecutive reactive steering responses, which show no temporal selectivity. Temporal pattern recognition is tuned to the species-specific syllable rate and gradually changes the gain of auditory steering. If pattern recognition is based on instantaneous discharge rate coding, then the tuning to the species-specific song pattern may already be present at the level of thoracic interneurons. During the processing of song patterns, changes in cytosolic Ca2+ concentrations occur in phase with the chirp rhythm in the local auditory interneurone. Male singing behaviour is controlled by command neurons descending from the brain. The neuropil controlling singing behaviour is located in the anterior protocerebrum next to the mushroom bodies. Singing behaviour is released by injection of cholinergic agonists and inhibited by γ-butyric acid (GABA). During singing, the sensitivity of the peripheral auditory system remains unchanged but a corollary discharge inhibits auditory processing in afferents and interneurons within the prothoracic auditory neuropil and prevents the auditory neurons from desensitisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

SP:

Syllable (or pulse) period

SPL:

Sound pressure level

ACh:

Acetylcholine

GABA:

γ-butyric acid

References

  • Baden T, Hedwig B (2005) Calcium dynamics in cricket auditory neurons. Cambridge Neuroscience Seminar, Cambridge

    Google Scholar 

  • Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of Mormyrid electric fish. J Neurosci 9:1029–1044

    PubMed  CAS  Google Scholar 

  • Bentley DR (1977) Control of cricket song patterns by descending interneurons. J Comp Physiol A 116:19–38

    Article  Google Scholar 

  • Berridge MJ (1998) Neuronal calcium signalling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  • Böhm H, Schildberger K (1992) Brain neurons involved in the control of walking in the cricket Gryllus bimaculatus. J Exp Biol 166:113–130

    Google Scholar 

  • Borst A, Egelhaaf M (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. PNAS 89:4139–4143

    Article  PubMed  CAS  Google Scholar 

  • Boyan G (1980) Auditory neurons in the brain of the cricket Gryllus bimaculatus (De Geer). J Comp Physiol A 140:81–93

    Article  Google Scholar 

  • Bradbury JW, Vehrenkamp SL (1998) Principles of animal communication. Sinauer, Sunderland

    Google Scholar 

  • Clarac F, Cattaert D (1996) Invertebrate presynaptic inhibition and motor control. Exp Brain Res 112:163–180

    Article  PubMed  CAS  Google Scholar 

  • Doherty JA (1985a) Trade-off phenomena in calling song recognition and phonotaxis in the cricket, Gryllus bimaculatus (Orthoptera, Gryllidae). J Comp Physiol A 156:787–801

    Article  Google Scholar 

  • Doherty JA (1985b) Temperature coupling and trade-off phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus de Geer (Gryllidae). J Exp Biol 114:17–35

    Google Scholar 

  • Doherty JA, Pires A (1987) A new microcomputer based method for measuring walking phonotaxis in the field crickets (Gryllidae). J Exp Biol 130:425–432

    PubMed  CAS  Google Scholar 

  • Edwards DH, Heitler WJ, Krasne FB (1999) Fifty years of a command neuron: the neurobiology of escape behaviour in the crayfish. TINS 22:153–161

    PubMed  CAS  Google Scholar 

  • Eibl E (1978) Morphology of the sense organs in the proximal parts of the tibiae of Gryllus campestris L. and Gryllus bimaculatus deGeer (Insecta, Ensifera). Zoomorphol 89:185–205

    Article  Google Scholar 

  • Esch H, Huber F, Wohlers DW (1980) Primary auditory neurons in crickets: Physiology and central projections. J Comp Physiol A 137:27–38

    Article  Google Scholar 

  • Fraenkel GS, Gunn DL (1961) The orientation of animals: Kineses, taxes and compass reactions. Dover, New York

    Google Scholar 

  • Galizia CG, Kimmerle B (2004) Physiological and morphological characterisation of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A 190:21–38

    Article  CAS  Google Scholar 

  • Grüsser O-J (1986) Interaction of efferent and afferent signals in visual perception. A history of ideas and experimental paradigms. Acta Psychologica 63:3–21

    Article  PubMed  Google Scholar 

  • Hedwig B (1994) A descending cephalo-thoracic command system controls stridulation in the acridid grasshopper Omocestus viridulus L. J Neurophysiol 72:2015–2025

    PubMed  CAS  Google Scholar 

  • Hedwig B (2000) Control of cricket stridulation by a command neuron: Efficacy depends on the behavioural state. J Neurophysiol 83:712–722

    PubMed  CAS  Google Scholar 

  • Hedwig B (2001) Singing and hearing: neuronal mechanisms of acoustic communication in Orthopterans. Zool 103:140–149

    Google Scholar 

  • Hedwig B, Heinrich R (1997) Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper. J Comp Physiol A 180:285–295

    Article  Google Scholar 

  • Hedwig B, Poulet JFA (2004) Complex auditory behaviour emerges from simple reactive steering. Nature 430:781–785

    Article  PubMed  CAS  Google Scholar 

  • Hedwig B, Poulet JFA (2005) Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus (de Geer) revealed with a fast trackball system. J Exp Biol 208:915–927

    Article  PubMed  CAS  Google Scholar 

  • Helversen von D, Helversen von O (1995) Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? J Comp Physiol A 177:767–774

    Article  Google Scholar 

  • Hennig RM (1988) Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents. J Comp Physiol A 163:135–143

    Article  PubMed  CAS  Google Scholar 

  • Hennig RM (2003) Acoustic feature extraction by cross correlation in crickets? J Comp Physiol A 189:589–598

    Article  CAS  Google Scholar 

  • Hennig RM, Otto D (1995) Distributed control of song pattern generation in crickets revealed by lesions to the thoracic ganglia. Zool 99:268–276

    Google Scholar 

  • Horseman G, Huber F (1994) Sound localisation in crickets I. Contralateral inhibition of an ascending interneurone (AN1) in the cricket Gryllus bimaculatus. J Comp Physiol A 175:389–398

    Article  Google Scholar 

  • Hoy RR (1978) Acoustic communication in crickets: A model system of feature detection. Fed Proc 37:2316–2323

    PubMed  CAS  Google Scholar 

  • Holst von E, Mittelstaedt H (1950) Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37:464–476

    Article  Google Scholar 

  • Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris L. Z Tierpsychol 12:12–48

    Google Scholar 

  • Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen. Z vergl Physiol 44:60–132

    Article  Google Scholar 

  • Huber F (1964) The role of the central nervous system in Orthoptera during the co-ordination and control of stridulation. In: Busnel R-G Acoustic behaviour of animals. Elsevier Amsterdam, pp 440–487

  • Huber F (1983) Neural correlates of orthopteran and cicada phonotaxis.In: Huber F, Markl H(eds) Neuroethology and behavioural physiology Springer Berlin Heidelberg New York, pp 108–135

  • Huber F, Kleindienst H-U, Weber T, Thorson J (1984) Auditory behaviour of the cricket: III. Tracking of male calling song by surgically and developmentally one-eared females, and the curious role of the anterior tympanum. J Comp Physiol A 155:725–738

    Article  Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press, New York

    Google Scholar 

  • Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1:3–39

    Article  Google Scholar 

  • Kutsch W, Otto D (1972) Evidence for spontaneous song production independent of head ganglia in Gryllus campestris L. J Comp Physiol A 81:115–119

    Article  Google Scholar 

  • Michel K (1974) Das Tympanalorgan von Gryllus bimaculatus deGeer (Saltatoria, Gryllidae). Z Morph Tiere 77:285–315

    Article  Google Scholar 

  • Nabatiyan A, Poulet JFA, Polavieja G, Hedwig B (2003) Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system. J Neurophysiol 90:2484–2493

    Article  PubMed  CAS  Google Scholar 

  • Nocke H (1972a) Biophysik der Schallerzeugung durch die Vorderflügel der Grillen. J Comp Physiol A 74:272–314

    Google Scholar 

  • Nocke H (1972b) Physiological aspects of sound communication in crickets (Gryllus campestris L.). J Comp Physiol A 80:141–162

    Article  Google Scholar 

  • Nolen TG, Hoy RR (1984) Initiation of behaviour by single neurons: The role of behavioural context. Science 226:992–994

    Article  PubMed  CAS  Google Scholar 

  • Oertner TG, Single S, Borst A (1999) Separation of voltage- and ligand-gated calcium influx in locust neurons by optical imaging. Neuroscience Letters 274:95–98

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Baba Y, Oka K (2001) Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneurone synapses in the cricket Inc. J Neurobiol 46:301–313

    Article  PubMed  CAS  Google Scholar 

  • Otto D (1971) Untersuchungen zur zentralnerv.ösen Kontrolle der Lauterzeugung von Grillen. Z vergl Physiol 74:227–271

    Article  Google Scholar 

  • Otto D (1978) Änderung von Gesangsparametern bei der Grille (Gryllus campestris) nach Injektion von Pharmaka ins Gehirn. Verh Dtsch Zool Ges, pp 245

    Google Scholar 

  • Pollack GS (1986) Discrimination of calling song models by the cricket, Teleogryllus oceanicus: The influence of sound direction on neural encoding of the stimulus temporal pattern and on phonotactic behaviour. J Comp Physiol A 158:549–561

    Article  Google Scholar 

  • Pollack G S (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639

    PubMed  CAS  Google Scholar 

  • Pollack GS, Hoy RR (1981) Phonotaxis in flying crickets: neural correlates. J Insect Physiol 27:41–45

    Article  Google Scholar 

  • Popov A, Shuvalov VF (1977) Phonotactic behaviour of crickets. J Comp Physiol A 119:111–126

    Article  Google Scholar 

  • Poulet JFA, Hedwig B (2001) Tympanic membrane oscillations and auditory receptor activity in the stridulating cricket Gryllus bimaculatus. J Exp Biol 204:1281–1293

    PubMed  CAS  Google Scholar 

  • Poulet JFA, Hedwig B (2002) A corollary discharge maintains auditory sensitivity during sound production. Nature 418:872–876

    Article  PubMed  CAS  Google Scholar 

  • Poulet JFA, Hedwig B (2003a) A corollary discharge modulates central auditory processing in singing crickets. J Neurophysiol 89:1528–1540

    Article  CAS  Google Scholar 

  • Poulet JFA, Hedwig B (2003b) Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket. J Neuroscience 23:4717–4725

    CAS  Google Scholar 

  • Poulet JFA, Hedwig B (2005) Auditory orientation in crickets: Pattern recognition controls reactive steering. PNAS 102:15665–15669

    Article  PubMed  CAS  Google Scholar 

  • Poulet JFA, Hedwig B (2006) The cellular basis of a corollary discharge. Science 311:518–522

    Article  PubMed  CAS  Google Scholar 

  • Regen J (1913) Über die Anlockung des Weibchens von Gryllus campestris durch telefonische Übertragung der Stridulation des Männchens. Pflügers Arch Eur J Physiol 155:193–200

    Article  Google Scholar 

  • Roeder KD (1964) Aspects of the noctuid tympanic nerve response having significance in the avoidance of bats. J Insect Physiol 10:529–546

    Article  Google Scholar 

  • Roesel von Rosenhof AJ (1749) Insectenbelustigung zweyter Theil, welcher acht Klassen verschiedener sowohl inlaendischer als auch einiger auslaendischer Insecten enthaelt. Nuernberg, Fleischmann JJ

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–185

    Article  Google Scholar 

  • Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis I. Influence of hyperpolarization of identified neurons on sound localisation. J Comp Physiol A 163:621–631

    Article  Google Scholar 

  • Schildberger K, Huber F, Wohlers DW (1989) Central auditory pathway: Neuronal correlates of phonotactic behaviour. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca, pp 423–458

    Google Scholar 

  • Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae). I. Mechanism of acoustic orientation in intact female crickets. J Comp Physiol A 148:431–444

    Article  Google Scholar 

  • Selverston AI, Kleindienst H-U, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5:1283–1292

    PubMed  CAS  Google Scholar 

  • Single S, Borst A (2002) Different mechanisms of calcium entry within different dendritic compartments. J Neurophysiol 87:1616–1624

    PubMed  CAS  Google Scholar 

  • Sobel EC, Tank DW (1994) In vivo Ca2+ dynamics in a cricket auditory neurone: An example of chemical computation. Science 263:823–826

    Article  PubMed  CAS  Google Scholar 

  • Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489

    Article  PubMed  CAS  Google Scholar 

  • Stabel J, Wendler G, Scharstein H (1989) Cricket phonotaxis: Localization depends on recognition of the calling song. J Comp Physiol A 165:165–177

    Article  Google Scholar 

  • Staudacher EM (2001) Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus. J Comp Physiol A 187:1–17

    Article  PubMed  CAS  Google Scholar 

  • Stout JF, McGhee R (1988) Attractiveness of the male Acheta domestica calling song to females II. The relative importance of syllable period, intensity, and chirp rate. J Comp Physiol A 164:277–287

    Article  Google Scholar 

  • Thorson J, Weber T, Huber F (1982) Auditory behaviour of the cricket. II. Simplicity of calling-song recognition in Gryllus, and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol A 146:361–378

    Article  Google Scholar 

  • Ulagaraj SM, Walker TJ (1973) Phonotaxis of crickets in flight: Attraction of male and female to male calling songs. Science 182:1278–1279

    Article  PubMed  Google Scholar 

  • Walker TJ, Masaki S (1989) Natural history. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca, pp1–42

  • Webb B (2002) Robots in invertebrate neuroscience. Nature 417:359–363

    Article  PubMed  CAS  Google Scholar 

  • Weber T, Thorson J (1988) Auditory behaviour of the cricket. IV. Interaction of direction of tracking with perceived split-song paradigms. J Comp Physiol A 163:13–22

    Article  Google Scholar 

  • Weber T, Thorson J (1989) Phonotactic behaviour of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca, pp310–339

    Google Scholar 

  • Weber T, Thorson J, Huber F (1981) Auditory behaviour of the cricket. I. Dynamics of compensated walking and discrimination on the Kramer treadmill. J Comp Physiol A 141:215–232

    Article  Google Scholar 

  • Wenzel B, Hedwig B (1999) Neurochemical control of cricket stridulation revealed by pharmacological microinjections into the brain. J Exp Biol 202:2203–2216

    PubMed  CAS  Google Scholar 

  • Wiersma CAG, Ikeda K (1964) Interneurons commanding swimmeret movements in the crayfish, Procambarus clarki (Girard). Comp Biochem Physiol 12:509–525

    Article  PubMed  CAS  Google Scholar 

  • Wiese K, Eilts-Grimm K (1985) Functional potential of recurrent lateral inhibition in cricket audition. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Berlin, pp 33–40

    Google Scholar 

  • Wohlers DW, Huber F (1978) Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L., G. bimaculatus DeGeer). J Comp Physiol A 127:11–28

    Article  Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol A 146:161–173

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the BBSRC, the Royal Society and in early parts by the DFG. I thank J.F.A. Poulet, A. Nabatiyan, T. Baden, G. de Polavieja, B. Wenzel and R. Ingham for excellent experiments and M. Knepper for professional updating of our software tools. J.F.A. Poulet, S. Rogers, A. Whitney and M. Zorovic made valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berthold Hedwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedwig, B. Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets. J Comp Physiol A 192, 677–689 (2006). https://doi.org/10.1007/s00359-006-0115-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0115-8

Keywords

Navigation