Skip to main content
Log in

Comparison of Photosynthetic Characteristics and Antioxidant Systems in Different Wheat Strains

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To gain better wheat (Triticum aestivum L.) varieties for planting in Sichuan province, we compared the differences in the photosystem II (PSII) and antioxidant defense system at the blooming stage in 20 different new wheat strains collected from the wheat regional trial of Sichuan province in the year 2015. According to all measured data, we found that one of the strains, CD012J1, presented the highest photosynthetic and antioxidant enzyme activities, and a lower level of reactive oxygen species (ROS) than other wheat strains. In contrast, Chuan12147 had a lower photosynthetic rate and accumulated a higher level of ROS compared with other wheat strains. At the same time, we also found that wheat strains SH1103, 12C, XK322-1, and 13B4 had better photosynthetic capacity compared with Chuan12147. Correlation analysis indicated that wheat yield was significantly correlated with chlorophyll fluorescence parameters: the maximum efficiency of PSII photochemistry (F v/F m), the quantum yield of PSII electron transport, and the non-photochemical quenching coefficient. In addition, immunoblotting analysis indicated that Chuan12147 presented the highest levels of PsbS protein in six different wheat strains. Taken together, our results suggest that CD012J1 and Chuan12147 have the best and worst photosynthetic capacity and antioxidant systems, respectively. Moreover, F v/F m and PsbS protein could be used as a marker in breeding of wheat varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Amjad M, Safdar MN, Mumtaz A, Naseem K, Raza S, Khalil S (2010) Comparison of different wheat varieties grown in Punjab for leavened flat bread (Naan) production. Pak J Nutr 9:146–150

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Barclay KD, Mckersie BD (1994) Peroxidation reactions in plant membranes: effects of free fatty acids. Lipids 29:877–883

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bowler C, Montagu W, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43:83–116

    Article  CAS  Google Scholar 

  • Brestic M, Zivcak M, Kalaji HM, Carpentier R, Allakhverdiev SI (2012) Photosystem II thermostability in situ: environmentally induced acclimation and genotype specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev SI (2016) High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth Res 130:251–266

    Article  CAS  PubMed  Google Scholar 

  • Bürling K, Hunsche M, Noga G (2010) Quantum yield of non-regulated energy dissipation in PSII (Y(NO)) for early detection of leaf rust (Puccinia triticina) infection in susceptible and resistant wheat (Triticum aestivum L.) cultivars. Precis Agric 11:703–716

    Article  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YE, Yuan S, Du JB, Xu MY, Zhang ZW, Lin HH (2009) Phosphorylation of photosynthetic antenna protein CP29 and photosystem II structure changes in monocotyledonous plants under environmental stresses. BioChemistry 48:9757–9763

    Article  CAS  PubMed  Google Scholar 

  • Chen YE, Cui JM, Su YQ, Yuan S, Yuan M, Zhang HY (2015) Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage. Front Plant Sci 779:1–11

    Google Scholar 

  • Chen YE, Yuan S, Schröder WP (2016a) Comparison of methods for extracting thylakoid membranes of Arabidopsis plants. Physiol Plantarum 156:3–12

    Article  CAS  Google Scholar 

  • Chen YE, Liu WJ, Su YQ, Cui JM, Zhang ZW, Yuan M, Zhang HY, Yuan S (2016b) Different response of photosystem II to short and long term drought stress in Arabidopsis thaliana. Physiol Plantarum 158:225–235

    Article  CAS  Google Scholar 

  • Chorfl A, Taibi K (2011) Biochemical screening for osmotic adjustement of wheat genotypes under drought stress. Tropicultura 29:82–87

    Google Scholar 

  • Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. Planta 157:224–232

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assay of glutathione peroxidase. Method Enzymol 105:114–121

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Graßes T, Pesaresi P, Schiavon F, Varotto C, Slamini F, Jahns P, Leister D (2002) The role of ∆pH-dependent dissipation of excitation energy in protecting photosystem II against light-induced damage in Arabidopsis thaliana. Plant Physiol Biochem 40:41–49

    Article  Google Scholar 

  • Griffey CA, Das MK, Stromberg EL (1993) Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis 77:618–622

    Article  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  PubMed  Google Scholar 

  • Grzesiak S, Grzesiak MT, Filek W, Stabryla J (2003) Evaluation of physiological screening tests for breeding drought resistant triticale (× Triticosecale Wittmack). Acta Physiol Plant 25:29–37

    Article  Google Scholar 

  • Hadjichristodoulou A (1990) Stability of 1000-grain weight and its relation with other traits of in dry areas. Euphytica 51:11–17

    Article  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havaux M, Strasser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP, and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27:41–55

    Article  CAS  PubMed  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Article  Google Scholar 

  • Johnson MP, Ruban AV (2010) Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Plant J 61:283–289

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, Ferroni L et al (2017) Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth Res 132:13–66

    Article  CAS  PubMed  Google Scholar 

  • Kampfenkel K, Vanmontagu M, Inze D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Zeb A (2007) Nutritional composition of Pakistani wheat varieties. J Zhejiang Univ Sci B 8:555–559

    Article  Google Scholar 

  • Kocheva KV, Kartseva T, Landjeva S, Georgiev GI (2009) Physiological response of wheat seedlings to mild and severe osmotic stress. Cereal Res Commun 37:199–208

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Landjeva S, Korzun V, Stoimenova E, Truberg B, Ganeva G, Borner A (2008) The contribution of the gibberellin-insensitive semi-dwarfing (Rht) genes to genetic variation in wheat seedling growth in response to osmotic stress. J Agric Sci 146:275–286

    Article  CAS  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Li TT, Hu YY, Du XH, Tang H, Shen CH, Wu JS (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE 9:e109492

    Article  PubMed  PubMed Central  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields. Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Makino A (2011) Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol 155:125–129

    Article  CAS  PubMed  Google Scholar 

  • Marcińska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA (2012) Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol Plant 35:451–461

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1980) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, Sagisaka S (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97:1265–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsovska K, Kovar M, Brestic M, Zivcak M, Slamka P, Shao HB (2016) Genotypically identifying wheat mesophyll conductance regulation under progressive drought stress. Frontiers in Plant Sci 7:1111

    Article  Google Scholar 

  • Pagliano C, Saracco G, Barber J (2013) Structural, functional and auxiliary proteins of photosystem II. Photosynth Res 116:1–22

    Article  Google Scholar 

  • Park SY, Paek NC (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Alfocea F, Larher F (1995) Sucrose and proline accumulation and sugar efflux in tomato leaf discs affected by NaCl and polyethylene glycol 6000 iso-osmotic stresses. Plant Sci 107:9–15

    Article  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081

    CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Pospisil P (2009) Production of reactive oxygen species by photosystem II. Biochim Biophys Acta 1787:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Bragado R, Molero G, Reynolds MP, Araus JL (2016) Photosynthetic contribution of the ear to grain filling in wheat: a comparison of different methodologies for evaluation. J Exp Bot 67:2787–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. doi:10.1155/2012/217037

    Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deflcit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Su XY, Wu S, Yang L, Xue RL, Li H, Wang YX, Zhao HJ (2014) Exogenous progesterone alleviates heat and high light stress-induced inactivation of photosystem II in wheat by enhancing antioxidant defense and D1 protein stability. Plant Growth Regul 74:311–318

    Article  CAS  Google Scholar 

  • Sun ZW, Ren LK, Fan JW, Li Q, Wang KJ, Guo MM, Wang L, Li J, Zhang GX, Yang ZY, Chen F, Li XN (2016) Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance. Plant Soil Environ 62:515–521

    Article  CAS  Google Scholar 

  • Thomas TA (1977) An automated procedure for the determination of soluble carbohydrates in herbage. J Sci Food Agr 28:639–642

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang YX, Zhang HL, Hou PF, Su XY, Zhao PF, Zhao HJ, Liu SC (2014) Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat (Triticum aestivum) during the grain filling stage by modulating the psbA gene transcription and antioxidant defense. Plant Growth Regul 73:289–297

    Article  CAS  Google Scholar 

  • Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98:589–608

    Article  CAS  PubMed  Google Scholar 

  • Yang CW, Wang P, Li CY, Shi DC, Wang DL (2008) Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 46:107–114

    Article  CAS  Google Scholar 

  • Zhang HL, Brestic M, Olsovska K, Li G, Meng QW, Yang HX (2015) Photochemical activity and energy distribution on wheat varieties with different heat-sensitivity under high temperature. Plant Physiol J 51:1142–1150

    Google Scholar 

  • Zhao HJ, Zhao XJ, Ma PF, Wang YX, Hu WW, Li LH, Zhao YD (2011) Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress. Acta Ecol Sin 31:259–263

    Article  Google Scholar 

  • Zivcak M, Repková J, Olsovska K, Brestic M (2009) Osmotic adjustment in winter wheat varieties and its importance as a mechanism of drought tolerance. Cereal Res Commun 37:569–572

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China, (Projects Nos 31201149, 31300207 and 31171557). We are especially grateful to Dr Jian Li (Ohio University) for critical reading of the manuscript and the language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Er Chen.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Yang-Er Chen, Yan-Qiu Su and Chao-Ming Zhang have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

344_2017_9731_MOESM1_ESM.jpg

Fig. S1 The maximum efficiency of PSII photochemistry (Fv/Fm) in 20 wheat plants at room temperature. Quantitative values (±SD) are shown below the individual fluorescence images (JPG 1418 KB)

344_2017_9731_MOESM2_ESM.jpg

Fig. S2 The quantum yield of PSII electron transport (ΦPSII) in 20 wheat plants at room temperature. Quantitative values (±SD) are shown below the individual fluorescence images (JPG 1302 KB)

344_2017_9731_MOESM3_ESM.jpg

Fig. S3 The non-photochemical quenching coefficient (NPQ) (C) in 20 wheat plants at room temperature. Quantitative values (±SD) are shown below the individual fluorescence images (JPG 1557 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YE., Su, YQ., Zhang, CM. et al. Comparison of Photosynthetic Characteristics and Antioxidant Systems in Different Wheat Strains. J Plant Growth Regul 37, 347–359 (2018). https://doi.org/10.1007/s00344-017-9731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9731-5

Keywords

Navigation