Skip to main content

Advertisement

Log in

Quantum yield of non-regulated energy dissipation in PSII (Y(NO)) for early detection of leaf rust (Puccinia triticina) infection in susceptible and resistant wheat (Triticum aestivum L.) cultivars

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The development and optimization of protocols for the precise and pre-symptomatic detection of diseases, and non-invasive evaluation of genotype-specific pathogen resistance enabling selection of the more promising genotypes in breeding programmes are important and often overlooked topics in precision agriculture. The increasing pressure to minimize both production costs and the environmental impact of pesticides forces the search for rapid and objective methods of screening pathogen resistance. Using the non-destructive pulse amplitude modulated (PAM) chlorophyll fluorescence imaging technique, we hypothesized that not only disease detection but also discrimination between differences in the level of resistance of wheat cultivars to the leaf rust (Puccinia triticina Erics.) pathogen can be achieved. Experiments were conducted using the cultivars Dekan and Retro as representatives of a susceptible and a highly resistant genotype, respectively. Fluorescence measurements were carried out daily on the control and on plants inoculated with P. triticina until the first small red-brown pustules appeared in the centre of chlorotic spots. In response to pathogen inoculation, the fluorescence readings showed an early characteristic increase in Y(NO) in both resistant and susceptible cultivars. The susceptible cultivar, however, showed a more pronounced difference between Y(NO) values measured on the control and inoculated leaves as well as a distinct evolution over time. Accordingly, our results indicate that Y(NO) might be suitable for discriminating between wheat genotypes as early as 2 days after inoculation. Thus, the proposed protocol might be adopted as an additional tool for the early screening of new genotypes, especially in breeding programs that aim for high resistance to disease and low crop variability for precision agriculture. However, its implementation in experimental field plots requires improvement of the measurement system and establishment of appropriate algorithms for disease pattern recognition and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auernhammer, H. (2001). Precision agriculture––the environmental challenge. Computers and Electronics in Agriculture, 30, 31–43.

    Article  Google Scholar 

  • Belkhodja, R., Morales, F., Abadía, A., Gómez-Aparisi, J., & Abadía, J. (1994). Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiology, 104, 667–673.

    CAS  PubMed  Google Scholar 

  • Bodria, L., Fiala, M., Oberti, R., & Naldi, E. (2002). Chlorophyll fluorescence sensing for early detection of crop′s diseases symptoms. In: ASAE (Eds.), Proceedings ASAE annual international meeting and CIGR XVth world congress (pp. 1–15), St. Joseph, Michigan: American Society of Agricultural and Biological Engineers.

  • Bolton, M. D., Kolmer, J. A., & Garvin, D. F. (2008). Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology, 9, 563–575.

    Article  PubMed  Google Scholar 

  • Bürling, K., Hunsche, M., & Noga, G. (2009). Early detection of Puccinia triticina infection in susceptible and resistant wheat cultivars by chlorophyll fluorescence imaging technique. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Precision agriculture ′09 (pp. 243–250). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Bundessortenamt. (2008). Beschreibende Sortenliste – Getreide, Mais, Ölfrüchte, Leguminosen und Hackfrüchte außer Kartoffeln. Hannover: Deutscher Landwirtschaftsverlag GmbH.

  • Buschmann, C., & Lichtenthaler, H. K. (1998). Principles and characteristics of multi-colour fluorescence imaging of plants. Journal of Plant Physiology, 152, 297–314.

    CAS  Google Scholar 

  • Chaerle, L., Hagenbeek, D., De Bruyne, E., & Van Der Straeten, D. (2007). Chlorophyll fluorescence imaging for disease resistance screening of sugar beet. Plant Cell, Tissue and Organ Culture, 91, 97–106.

    Article  CAS  Google Scholar 

  • Devadas, R., Lamb, D. W., Simpfendorfer, S., & Backhouse, D. (2008). Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precision Agriculture, 10, 459–470.

    Article  Google Scholar 

  • Doll, H., Holm, U., Sogaard, B., & Bay, H. (1994). Phenolic compounds in barley varieties with different degree of partial resistance against powdery mildew. Acta Horticulturae, 381, 576–582.

    CAS  Google Scholar 

  • Garcia-Lara, E., Leyva-Mir, S. G., Cardenas-Soriano, E., Huerta-Espino, J., Sandoval-Islas, J. S., & Villasenor-Mir, E. (2007). Infection process to wheat leaf rust (Puccinia triticina Erikson) in genotypes with partial resistance. Agrociencia, 417, 775–785.

    Google Scholar 

  • Huang, S., Vleeshouwers, V., Visser, R. G. F., & Jacobsen, E. (2005). An accurate in vitro assay for high-throughput disease testing of Phytophthora infestans in potato. Plant Disease, 89, 1263–1267.

    Article  Google Scholar 

  • Hunsche, M., Bürling, K., Saied, A. S., Schmitz-Eiberger, M., Sohail, M., Gebauer, J., et al. (2010). Effects of NaCl on surface properties, chlorophyll fluorescence and light remission, and cellular compounds of Grewia tenax (Forssk.) Fiori and Tamarindus indica L. leaves. Plant Growth Regulation, 61, 253–263. doi:10.1007/s10725-010-9473-x.

    Article  Google Scholar 

  • Jacobs, T. (1989). Germination and appressorium formation of wheat leaf rust on susceptible, partially resistant and resistant wheat seedlings and on seedlings of other Gramineae. Netherlands Journal of Plant Pathology, 95, 65–71.

    Article  Google Scholar 

  • Klughammer, C., & Schreiber, U. (2008). Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Application Notes, 1, 27–35.

    Google Scholar 

  • Kolmer, J. A. (1997). Virulence in Puccinia recondita f. sp. tritici isolates from Canada to genes for adult-plant resistance to wheat leaf rust. Plant Disease, 81(3), 267–271.

    Article  Google Scholar 

  • Kolmer, J. A., Long, D. L., & Hughes, M. E. (2007). Physiologic specialization of Puccinia triticina on wheat in the United States in 2005. Plant Disease, 918, 979–984.

    Article  Google Scholar 

  • Kramer, D. M., Johnson, G., Kiirats, O., & Edwards, G. E. (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Kuckenberg, J., Tartachnyk, I., & Noga, G. (2009a). Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precision Agriculture, 10, 34–44.

    Article  Google Scholar 

  • Kuckenberg, J., Tartachnyk, I., & Noga, G. (2009b). Detection and differentiation of nitrogen-deficiency, powdery mildew and leaf rust at wheat leaf and canopy level by laser-induced chlorophyll fluorescence. Biosystems Engineering, 103, 121–128.

    Article  Google Scholar 

  • Li, F., Miao, Y., Hennig, S. D., Gnyp, M. L., Chen, X., Jia, L., & Bareth, G. (2010). Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precision Agriculture. doi:10.1007/s11119-010-9165-6.

  • Lichtenthaler, H. K., Buschmann, C., Rinderle, U., & Schmuck, G. (1986). Application of chlorophyll fluorescence in ecophysiology. Radiation and Environmental Biophysics, 25, 297–308.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H. K., & Miehé, J. (1997). Fluorescence imaging as a diagnostic tool for plant stress. Trends in Plant Science, 2, 316–320.

    Article  Google Scholar 

  • Lütticken, R. E. (2000). Automation and standardisation of site specific soil sampling. Precision Agriculture, 2, 179–188.

    Article  Google Scholar 

  • Mahlein, A.-K., Steiner, U., Dehne, H.-W., & Oerke, E.-C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture, 11, 413–431.

    Article  Google Scholar 

  • Martinez, F., Sillero, J. C., & Rubiales, C. (2004). Effect of host plant resistance on haustorium formation in cereal rust fungi. Journal of Phytopathology, 152, 381–382.

    Article  Google Scholar 

  • McIntosh, R. A., Wellings, C. R., & Park, R. F. (1995). Wheat rusts: An atlas of resistance genes. Melbourne: CSIRO.

    Google Scholar 

  • Pawelec, A., Dubourg, C., & Briard, M. (2006). Evaluation of carrot resistance to alternaria leaf blight in controlled environments. Plant Pathology, 55, 68–72.

    Article  Google Scholar 

  • Petkova, V., Denev, I. D., Cholakov, D., & Porjazov, I. (2007). Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters. Scientia Horticulturae-Amsterdam, 111, 101–106.

    Article  CAS  Google Scholar 

  • Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. Advances in Agronomy, 67, 1–85.

    Article  Google Scholar 

  • Poyntz, B., & Hide, P. M. (1987). The expression of partial resistance of wheat to Puccinia recondita. Journal of Phytopathology, 120, 136–142.

    Article  Google Scholar 

  • Reyns, P., Missotten, B., Ramon, H., & De Baerdemaeker, J. (2002). A review of combine sensors for precision farming. Precision Agriculture, 3, 169–182.

    Article  Google Scholar 

  • Rubiales, D., & Niks, R. E. (1995). Characterization of LR34, a major gene conferring nonhypersensitive resistance to wheat leaf rust. Plant Disease, 79, 1208–1212.

    Article  Google Scholar 

  • Schapendonk, A. H. C. M., Dolstra, O., & Van Kooten, O. (1989). The use of chlorophyll fluorescence as a screening method for cold tolerance in maize. Photosynthesis Research, 20, 235–247.

    CAS  Google Scholar 

  • Schnabel, G., Strittmatter, G., & Noga, G. (1998). Changes in photosynthetic electron transport in potatoe cultivars with different field resistance after infection with Phytophthora infestans. Journal of Phytopathology, 146, 205–210.

    Article  CAS  Google Scholar 

  • Scholes, J. D., & Rolfe, S. A. (2009). Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: A phenomics perspective. Functional Plant Biology, 36, 880–892.

    Article  Google Scholar 

  • Schreiber, U. (2004). Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview. In G. C. Papageorgiou & Govinjee (Eds.), Chlorophyll a fluorescence: A signature of photosynthesis (pp. 279–319). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Smillie, R. M., & Hetherington, S. E. (1983). Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo. Plant Physiology, 72, 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  • Steiner, U., Bürling, K., & Oerke, E.-C. (2008). Sensorik für einen präzisierten Pflanzenschutz. Gesunde Pflanzen, 60, 131–141.

    Article  Google Scholar 

  • Swarbrick, P. J., Schulze-Lefert, P., & Scholes, J. D. (2006). Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell and Environment, 29, 1061–1076.

    Article  CAS  Google Scholar 

  • Tremblay, N., Wang, Z., Ma, B.-L., Belec, C., & Vigneault, P. (2009). A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. Precision Agriculture, 10, 145–161.

    Article  Google Scholar 

  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture––a worldwide overview. Computers and Electronics in Agriculture, 36, 113–132.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the German Research Foundation (DFG-research training group 722) for the financial support, the Gemeinschaft zur Förderung der privaten deutschen Pflanzenzüchtung e.V. (GFP) for providing the wheat seeds, and PD Dr. U. Steiner-Stenzel, Department of Phytomedicine, University of Bonn, for the Puccinia triticina inoculum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hunsche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürling, K., Hunsche, M. & Noga, G. Quantum yield of non-regulated energy dissipation in PSII (Y(NO)) for early detection of leaf rust (Puccinia triticina) infection in susceptible and resistant wheat (Triticum aestivum L.) cultivars. Precision Agric 11, 703–716 (2010). https://doi.org/10.1007/s11119-010-9194-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-010-9194-1

Keywords

Navigation