Skip to main content
Log in

Exogenous progesterone alleviates heat and high light stress-induced inactivation of photosystem II in wheat by enhancing antioxidant defense and D1 protein stability

  • Brief communication
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

This experiment was conducted to test the effects of foliar application of progesterone on the photochemical efficiency of photosystem II (PSII) and photosynthetic rate in wheat flag leaves subjected to cross-stress of heat and high light during grain-filling stage. The results showed that progesterone pretreatment increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and the contents of ascorbic acid and glutathione under the cross-stress. Meanwhile, the rate of O2 production, hydrogen peroxide (H2O2) and malondialdehyde contents in progesterone pretreated leaves were significantly lower under heat and high light stress. In parallel with the alleviation of oxidative stress, higher content of D1 protein in PSII reactive center was observed in progesterone pretreated leaves, resulting in a significant increase in the potential (Fv/Fm) and actual (ΦPS II) photochemical efficiency of PSII, and the net photosynthetic rate. In summary, this study suggested that foliar application of progesterone might protect the PSII complex from heat and high light stress-induced damage through enhancing antioxidant defense system and further facilitating D1 protein stability in the wheat leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

ANOVA:

One-way analysis of variance

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

CAT:

Catalase

EDTA:

Ethylene diamine tetraacetic acid

Fv/Fm:

Potential photochemical efficiency of PSII

GR:

Glutathione reductase

GSH:

Reduced glutathione

HH:

Heat and high light

MDA:

Malondialdehyde

NBT:

Nitro blue tetrazolium

PAGE:

Polyacrylamide gel electrophoresis

Pn:

Net photosynthetic rate

PSII:

Photosystem II

ΦPSII:

Actual photochemical efficiency of PSII

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

References

  • Adir N, Zer H, Shochat S, Ohad I (2003) Photoinhibition—a historical perspective. Photosynth Res 76:343–370

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Anderson MP, Gronwald JW (1991) Atrazine resistance in velvetleaf (Abutilon theophrasi) biotype due to enhanced glutathione S-transferase activity. Plant Physiol 96:104–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Balla K, Bencze S, Janda T, Veisz O (2009) Analysis of heat stress tolerance in winter wheat. Acta Agron Hung 57:437–444

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and assay for acrylamide gels. Ann Biochem 44:267–278

    Article  Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol Plant Mol Biol 31:491–543

    Article  Google Scholar 

  • Bowler C, Montagu W (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448. doi:10.1126/science.218.4571.443

    Article  CAS  PubMed  Google Scholar 

  • Callahan FE, Ghirardi ML, Sopory SK (1990) A novel metabolic form of the 32 kDa-D1 protein in the grana-localized reaction center of photosystem II. J Biol Chem 265:15357–15360

    CAS  PubMed  Google Scholar 

  • Dumlupinar R, Genisel M, Erdal S, Korkut T, Taspinar MS, Taskin M (2011) Effects of progesterone, β-estradiol and androsterone on the changes of inorganic element content in barley leaves. Biol Trace Elem Res 143:1740–1745

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxyl ammonium chloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Erdal S (2012a) Exogenous mammalian sex hormones mitigate inhibition in growth by enhancing antioxidant activity and synthesis reactions in germinating maize seeds under salt stress. J Sci Food Agric 92:839–843

    Article  CAS  PubMed  Google Scholar 

  • Erdal S (2012b) Alleviation of salt stress in wheat seedlings by mammalian sex hormones. J Sci Food Agric 92:1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Erdal S, Dumlupinar R (2010) Progesterone and β-estradiol stimulate the seed germination in chickpea by causing important changes in biochemical parameters. Z Naturforsch C 65:239–244

    CAS  PubMed  Google Scholar 

  • Erdal S, Dumlupinar R (2011) Mammalian sex hormones stimulate antioxidant system and enhance growth of chickpea plants. Acta Physiol Plant 33:1011–1017

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Genisel M, Turk H, Erdal S (2012) Exogenous progesterone application protects chickpea seedlings against chilling-induced oxidative stress. Acta Physiol Plant. doi:10.1007/s11738-012-1070-3

    Google Scholar 

  • Giaveno C, Ferrero J (2003) Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, Argentina. Crop Breed Appl Biotechnol 3:89–94

    Article  Google Scholar 

  • Guo JW, Wei HM, Wu SF (2006) Effects of low temperature on the distribution of excitation energy in photosystem and the phosphorylation of thylakoid membrane proteins in rice. Acta Biophys Sin 22(3):197–202

    CAS  Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and development characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Iino M, Nomura T, Tamaki Y, Yamada Y, Yoneyama K, Takeuchi Y, Mori M, Asami T, Nakano T, Yokota T (2007) Progesterone: its occurrence in plants and involvement in plant growth. Phytochemistry 68:1664–1673

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Chaudhuri A (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  Google Scholar 

  • Janeczko A (2012) The presence and activity of progesterone in the plant kingdom. Steroids 77:169–173

    Article  CAS  PubMed  Google Scholar 

  • Janeczko A, Filek W (2002) Stimulation of generative development in partly vernalized winter wheat by animal sex hormones. Acta Physiol Plant 24(3):291–295

    Article  CAS  Google Scholar 

  • Laemmli DK (1970) Cleavage of structural proteins during in assembly of the heat of bacteriophage T4. Nature 227:680

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Huang B (2004) Thermo-tolerance and antioxidant systems in Agrostis stoloifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Li J, Du LF (2001) A new approach to detect plant thylakoid phosphoprotein in vivo. Prog Biochem Biophys 28(5):740–743

    Google Scholar 

  • Marutani Y, Yamauchi Y, Kimura Y, Mizutani M, Sugimoto Y (2012) Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. Planta 236:753–761

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photo inhibition of photosystem II under environmental stress. Biochim Biophys Acta (BBA)-Bioenerg 1767:414–421

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Oukarroum A, Strasser RJ, Schansker G (2012) Heat stress and photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. Photosynth Res 111:303–314

    Article  CAS  PubMed  Google Scholar 

  • Paulsen GM (1994) High temperature response of crop plants. In: Boote KJ, Bennett JM, Sinclair TM, Paulsen GM (eds) Physiology and determination of crop yield. American Society of Agronomy, Crop science Society of America and Soil Science Society of America, Madison, pp 365–389

    Google Scholar 

  • Rintamaki E, kettunen R, Aro EM (1996) Differential D1 dephosphorylation in functional and photo damaged photosystem II centers. J Biol Chem 271:14870–14875

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singhal G (2001) Effect of irradiance on the thermal stability of thylakoid membrane isolated from acclimated wheat leaves. Photosynthetica 39:23–27

    Article  CAS  Google Scholar 

  • Tonamura B (1978) Test reactions for a stopped flow apparatus regulation of 2, 6-D and potassium ferricyanide by L-ascorbic acid. Anal Biochem 84:370–383

    Article  Google Scholar 

  • Vollenweider P, Gunhardt-Goerg MS (2005) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 137:455–465

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y (2008) Quality control of photosystem II: impact of light and heat stress. Photosynth Res 98:589–608

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Nijo N, Pospísil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y (2008) Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem 283(42):28380–28391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ylstra B, Touraev A, Brinkmann AO, Heberle-Bors E, van Tunen AJ (1995) Steroid hormones stimulate germination and tube growth of in vitro matured tobacco pollen. Plant Physiol 107:639–643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yordanov IS, Dilova R, Petkova T, Pangelova V, Goltsev V, Süss K-H (1986) Mechanisms of the temperature damage and acclimation of the photosynthetic apparatus. Photobiochem Photobiophys 12:147–155

    Google Scholar 

  • Zhao HJ, Zou Q (2002) Protective effects of exogenous antioxidants and phenolic compounds on photosynthesis of wheat leaves under high irradiance and oxidative stress. Photosynthetica 40(4):523–527

    Article  CAS  Google Scholar 

  • Zhao HJ, Zhao XJ, Ma PF, Wang YX, Hu WW, Li LH, Zhao YD (2011) Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress. Acta Ecol Sin 31:259–263

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (30971725).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijie Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, X., Wu, S., Yang, L. et al. Exogenous progesterone alleviates heat and high light stress-induced inactivation of photosystem II in wheat by enhancing antioxidant defense and D1 protein stability. Plant Growth Regul 74, 311–318 (2014). https://doi.org/10.1007/s10725-014-9920-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9920-1

Keywords

Navigation