Skip to main content
Log in

Quality control of photosystem II: impact of light and heat stresses

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosystem II is vulnerable to various abiotic stresses such as strong visible light and heat. Under both stresses, the damage seems to be triggered by reactive oxygen species, and the most critical damage occurs in the reaction center-binding D1 protein. Recent progress has been made in identifying the protease involved in the degradation of the photo- or heat-damaged D1 protein, the ATP-dependent metalloprotease FtsH. Another important result has been the discovery that the damaged D1 protein aggregates with nearby polypeptides such as the D2 protein and the antenna chlorophyll-binding protein CP43. The degradation and aggregation of the D1 protein occur simultaneously, but the relationship between the two is not known. We suggest that phosphorylation and dephosphorylation of the D1 protein, as well as the binding of the extrinsic PsbO protein to Photosystem II, play regulatory roles in directing the damaged D1 protein to the two alternative pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PSII:

Photosystem II

D1 and D2:

The reaction center-binding proteins of PSII

P680:

The primary electron donor to PSII

QA and QB :

The first and second electron acceptor plastoquinones

Tryz :

The secondary electron donor to PSII

Pheo:

The primary electron acceptor pheophytin

CP43 and 47:

The antenna chlorophyll-binding proteins of PSII

LHCII:

The light-harvesting chlorophyll–protein complex of PSII

PAM:

Pulse–amplitude modulation

ROS:

Reactive oxygen species

1O2:

Singlet oxygen

O2 •− :

Superoxide anion radical

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

PsbO, P and Q:

The extrinsic proteins associated with the lumenal side of PSII

Fv/Fm:

The optimum quantum yield of photochemistry in PSII measured by chlorophyll fluorescence

HO :

Hydroxyl radical

AAA:

ATPase associated with various cellular activities

FtsH:

Filamentation temperature sensitive H

Lon, ClpAP, ClpXP, and HslUV:

The prokaryotic AAA proteases

Deg:

ATP-independent serine-type endopeptidases associated with the thylakoids

PSI:

Photosystem I

References

  • Adam Z, Clarke AK (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci 7:451–456. doi:10.1016/S1360-1385(02)02326-9

    Article  PubMed  CAS  Google Scholar 

  • Adam Z, Zaltsman A, Sinvany-Villalobo G, Sakamoto W (2005) FtsH proteases in chloroplasts and cyanobacteria. Physiol Plant 123:386–390. doi:10.1111/j.1399-3054.2004.00436.x

    Article  CAS  Google Scholar 

  • Adam Z, Rudella A, van Wijk KJ (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr Opin Plant Biol 9:234–240. doi:10.1016/j.pbi.2006.03.010

    Article  PubMed  CAS  Google Scholar 

  • Aminaka R, Taira Y, Kashino Y, Koike H, Satoh K (2006) Acclimation to the growth temperature and thermosensitivity of photosystem II in a mesophilic cyanobacterium, Synoechocystis sp. PCC6803. Plant Cell Physiol 47:1612–1621. doi:10.1093/pcp/pcl024

    Article  PubMed  CAS  Google Scholar 

  • Andersson B, Aro E-M (1997) Proteolytic activities and proteases of plant chloroplasts. Physiol Plant 100:780–793. doi:10.1111/j.1399-3054.1997.tb00005.x

    Article  CAS  Google Scholar 

  • Aro E-M, Kettunen R, Tyystjärvi E (1992) ATP and light regulate D1 protein modification and degradation. FEBS Lett 297:29–33. doi:10.1016/0014-5793(92)80320-G

    Article  PubMed  CAS  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134. doi:10.1016/0005-2728(93)90134-2

    Article  PubMed  CAS  Google Scholar 

  • Aro E-M, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N, Rintamäki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356. doi:10.1093/jxb/eri041

    Article  PubMed  CAS  Google Scholar 

  • Baena-González E, Aro E-M (2002) Biogenesis, assembly and turnover of photosystem II units. Philos Trans R Soc Lond B Biol Sci 357:1451–1460. doi:10.1098/rstb.2002.1141

    Article  PubMed  CAS  Google Scholar 

  • Baena-González E, Barbato R, Aro E-M (1999) Role of phosphorylation in the repair cycle and oligomeric structure of photosystem II. Planta 208:196–204. doi:10.1007/s004250050550

    Article  Google Scholar 

  • Bailey S, Thompson E, Nixon PJ, Horton P, Mullineaux CW, Robinson C, Mann NH (2002) A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J Biol Chem 277:2006–2011. doi:10.1074/jbc.M105878200

    Article  PubMed  CAS  Google Scholar 

  • Barbato R, Friso G, de Laureto P, Frizzo A, Rigoni F, Giacometti GM (1992a) Light-induced degradation of D2 protein in isolated photosystem II reaction centre complex. FEBS Lett 311:33–36. doi:10.1016/0014-5793(92)81360-X

    Article  PubMed  CAS  Google Scholar 

  • Barbato R, Friso G, Rigoni F, Dalla Vecchia F, Giacometti GM (1992b) Structural changes and lateral redistribution of photosystem II during donor side photoinhibition of thylakoids. J Cell Biol 119:325–335. doi:10.1083/jcb.119.2.325

    Article  PubMed  CAS  Google Scholar 

  • Barbato R, Friso G, Ponticos M, Barber J (1995) Characterization of the light-induced cross-linking of the α-subunit of cytochrome b 559 and the D1 protein in isolated photosystem II reaction centers. J Biol Chem 270:24032–24037. doi:10.1074/jbc.270.41.24032

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1982) Influence of surface charges on thylakoid structure and function. Annu Rev Plant Physiol 33:261–295. doi:10.1146/annurev.pp.33.060182.001401

    Article  CAS  Google Scholar 

  • Barber J (1998) Photosystem two. Biochim Biophys Acta 1365:269–277. doi:10.1016/S0005-2728(98)00079-6

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 17:61–66. doi:10.1016/0968-0004(92)90503-2

    Article  PubMed  CAS  Google Scholar 

  • Bellafiore S, Bareneche F, Peltier G, Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895. doi:10.1038/nature03286

    Article  PubMed  CAS  Google Scholar 

  • Bennett J (1980) Chloroplast phosphoproteins. Evidence for a thylakoid-bound phosphoprotein phosphatases. Eur J Biochem 104:85–89. doi:10.1111/j.1432-1033.1980.tb04403.x

    Article  PubMed  CAS  Google Scholar 

  • Bennett J, Steinback KE, Arntzen CJ (1980) Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. Proc Natl Acad Sci USA 77:5253–5257. doi:10.1073/pnas.77.9.5253

    Article  PubMed  CAS  Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543. doi:10.1146/annurev.pp.31.060180.002423

    Article  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Google Scholar 

  • Blubaugh DJ, Atamian M, Babcock GT, Golbeck JH, Cheniae GM (1991) Photoinhibition of hydroxylamine-extracted photosystem II membranes: identification of the sites of photodamage. Biochemistry 30:7586–7597. doi:10.1021/bi00244a030

    Article  PubMed  CAS  Google Scholar 

  • Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P, Leister D (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–1182. doi:10.1038/nature04016

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM, Frankel LK (1998) The structure and function of the 33 kDa extrinsic protein of photosystem II: a critical assessment. Photosynth Res 56:157–173. doi:10.1023/A:1006068615220

    Article  CAS  Google Scholar 

  • Calderone V, Trabucco M, Vujičić A, Battistutta R, Giacometti GM, Andreucci F, Barbato R, Zanotti G (2003) Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep 4:900–905. doi:10.1038/sj.embor.embor923

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Govindjee (1990) Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes. Biochim Biophys Acta 1015:180–188. doi:10.1016/0005-2728(90)90018-Y

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Burke JJ, Velten J, Xin Z (2006) FtsH11 protease plays a critical role in Arabidopsis thermotolerance. Plant J 48:73–84. doi:10.1111/j.1365-313X.2006.02855.x

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Choi Y, Voytas DF, Rodermel SR (2000) Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 22:303–313. doi:10.1046/j.1365-313x.2000.00738.x

    Article  PubMed  Google Scholar 

  • Chow WS, Thorne SW, Duniec JT, Sculley MJ, Boardman NK (1980) The stacking of chloroplast thylakoids. Effects of cation screening and binding, studied by the digitonin method. Arch Biochem Biophys 201:347–355. doi:10.1016/0003-9861(80)90520-2

    Article  PubMed  CAS  Google Scholar 

  • Chow WS, Kim E-H, Horton P, Anderson JM (2005) Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem Photobiol Sci 4:1081–1090. doi:10.1039/b507310n

    Article  PubMed  CAS  Google Scholar 

  • Christopher DA, Mullet JE (1994) Separate photosensory pathways co-regulate blue light/ultraviolet-A-activated psbD-psbC transcription and light-induced D2 and CP43 degradation in barley (Hordeum vulgare) chloroplasts. Plant Physiol 104:1119–1129. doi:10.1104/pp.104.4.1119

    Article  PubMed  CAS  Google Scholar 

  • Clarke AK, MacDonald TM, Sjögren LL (2005) The ATP-dependent Clp protease in chloroplasts of higher plants. Physiol Plant 123:406–412. doi:10.1111/j.1399-3054.2005.00452.x

    Article  CAS  Google Scholar 

  • Clausen T, Southan C, Ehrmann M (2002) The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 10:857–864. doi:10.1016/S1097-2765(02)00658-5

    Article  Google Scholar 

  • Danielsson R, Suorsa M, Paakkarinen V, Albertsson P-Å, Styring S, Aro E-M, Mamedov F (2006) Dimeric and monomeric organization of photosystem II. Distribution of five distinctive complexes in the different domains of the thylakoid membrane. J Biol Chem 281:14241–14249. doi:10.1074/jbc.M600634200

    Article  PubMed  CAS  Google Scholar 

  • De Las Rivas J, Heredia P, Roman A (2007) Oxygen-evolving extrinsic proteins (PsbO, P, Q, R): bioinformatic and functional analysis. Biochim Biophys Acta 1767:575–582. doi:10.1016/j.bbabio.2007.01.018

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WWIII (1996) The role of xanthophylls cycle carotenoids in the protection in photosynthesis. Trends Plant Sci 1:21–26. doi:10.1016/S1360-1385(96)80019-7

    Article  Google Scholar 

  • Duniec JT, Thorne SW (1977) The relation of light-induced slow absorbancy and scattering changes about 520 nm and structure of chloroplast thylakoids—a theoretical investigation. J Bioenerg Biomembr 9:223–235. doi:10.1007/BF00743153

    Article  PubMed  CAS  Google Scholar 

  • Ebbert V, Godde D (1996) Phosphorylation of PS II polypeptides inhibits D1 protein-degradation and increases PS II stability. Photosynth Res 50:257–269. doi:10.1007/BF00033124

    Article  CAS  Google Scholar 

  • Elich TD, Edelman M, Mattoo AK (1992) Identification, characterization, and resolution of the in vivo phosphorylated form of the D1 photosystem II reaction center protein. J Biol Chem 267:3523–3529

    PubMed  CAS  Google Scholar 

  • Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S (1994) Is the primary cause of thermal inactivation of oxygen evolution in spinach PS II membranes release of the extrinsic 33 kDa protein or of Mn? Biochim Biophys Acta 1186:52–58. doi:10.1016/0005-2728(94)90134-1

    Article  CAS  Google Scholar 

  • Ferjani A, Abe S, Ishikawa Y, Henmi T, Tomokawa Y, Nishi Y, Tamura N, Yamamoto Y (2001) Characterization of the stromal protease(s) degrading the cross-linked products of the D1 protein generated by photoinhibition of photosystem II. Biochim Biophys Acta 1503:385–395. doi:10.1016/S0005-2728(00)00233-4

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838. doi:10.1126/science.1093087

    Article  PubMed  CAS  Google Scholar 

  • Ford RC, Barber J (1983) Time-dependent decay and anisotropy of fluorescence from diphenylhexatriene embedded in the chloroplast thylakoid membrane. Biochim Biophys Acta 722:341–348. doi:10.1016/0005-2728(83)90082-8

    Article  CAS  Google Scholar 

  • Ford RC, Chapman DJ, Barber J, Pedersen JZ, Cox RP (1982) Fluorescence polarization and spin-label studies of the fluidity of stromal and granal chloroplast membranes. Biochim Biophys Acta 681:145–151. doi:10.1016/0005-2728(82)90017-2

    Article  CAS  Google Scholar 

  • García-Lorenzo M, Żelisko A, Jackowski G, Funk C (2005) Degradation of the main photosystem II light-harvesting complex. Photochem Photobiol Sci 4:1065–1071. doi:10.1039/b506625e

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35:67–78. doi:10.1007/BF02185412

    Article  CAS  Google Scholar 

  • Gombos Z, Wada H, Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci USA 91:8787–8791. doi:10.1073/pnas.91.19.8787

    Article  PubMed  CAS  Google Scholar 

  • Gore A (2006) An inconvenient truth. The planetary emergency of global warming and what we can do about it. Rodale, New York

    Google Scholar 

  • Greenberg BM, Gaba V, Mattoo AK, Edelman M (1987) Identification of primary in vivo degradation product of the rapidly-turning-over 32 kDa protein of photosystem II. EMBO J 6:2865–2869

    PubMed  CAS  Google Scholar 

  • Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochim Biophys Acta 1706:68–80. doi:10.1016/j.bbabio.2004.09.001

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85. doi:10.1016/0076-6879(90)86093-B

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto A, Akasaka T, Yamamoto Y (1993) Characteristics of the assembly of the 33 kDa oxygen-evolving complex protein in the etioplasts and the developing chloroplasts of barley seedlings. Biochim Biophys Acta 1183:397–407. doi:10.1016/0005-2728(93)90245-B

    Article  CAS  Google Scholar 

  • Hashimoto A, Yamamoto Y, Theg SM (1996) Unassembled subunits of the photosynthetic oxygen-evolving complex present in the thylakoid lumen are long-lived and assembly-competent. FEBS Lett 391:29–34. doi:10.1016/0014-5793(96)00686-2

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto A, Ettinger WF, Yamamoto Y, Theg SM (1997) Assembly of newly imported oxygen-evolving complex subunits in isolated chloroplasts: site of assembly and mechanism of binding. Plant Cell 9:441–452

    Article  PubMed  CAS  Google Scholar 

  • Haußühl K, Andersson B, Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 20:713–722. doi:10.1093/emboj/20.4.713

    Article  PubMed  Google Scholar 

  • Henmi T, Yamasaki H, Sakuma S, Tomokawa Y, Tamura N, Shen J-R, Yamamoto Y (2003) Dynamic interaction between the D1 protein, CP43 and OEC33 at the lumenal side of photosystem II in spinach chloroplasts: evidence from light-induced cross-linking of the proteins in the donor-side photoinhibition. Plant Cell Physiol 44:451–456. doi:10.1093/pcp/pcg049

    Article  PubMed  CAS  Google Scholar 

  • Henmi T, Miyao M, Yamamoto Y (2004) Release and reactive-oxygen-mediated damage of the oxygen-evolving complex subunits of PSII during photoinhibition. Plant Cell Physiol 45:243–250. doi:10.1093/pcp/pch027

    Article  PubMed  CAS  Google Scholar 

  • Hideg É, Spetea C, Vass I (1994) Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy. Photosynth Res 39:191–199. doi:10.1007/BF00029386

    Article  CAS  Google Scholar 

  • Huesgen PF, Schuhmann H, Adamska I (2005) The family of Deg proteases in cyanobacteria and chloroplasts of higher plants. Physiol Plant 123:413–420. doi:10.1111/j.1399-3054.2005.00458.x

    Article  CAS  Google Scholar 

  • Huesgen PF, Schuhmann H, Adamska I (2006) Photodamaged D1 protein is degraded in Arabidopsis mutant lacking the Deg2 protease. FEBS Lett 580:6929–6932. doi:10.1016/j.febslet.2006.11.058

    Article  PubMed  CAS  Google Scholar 

  • Ifuku K, Nakatsu T, Kato H, Sato F (2004) Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. EMBO Rep 5:362–367. doi:10.1038/sj.embor.7400113

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Nakatani E, Henmi T, Ferjani A, Harada Y, Tamura N, Yamamoto Y (1999) Turnover of the aggregates and cross-linked products of the D1 protein generated by acceptor-side photoinhibition of photosystem II. Biochim Biophys Acta 1413:147–158. doi:10.1016/S0005-2728(99)00093-6

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Akiyama Y (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 59:211–231. doi:10.1146/annurev.micro.59.030804.121316

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki H, Naveh L, Lindahl M, Cook M, Adam Z (1998) Identification and characterization of DegP, a serine protease associated with the luminal side of the thylakoid membrane. J Biol Chem 273:7094–7098. doi:10.1074/jbc.273.12.7094

    Article  PubMed  CAS  Google Scholar 

  • Jegerschöld C, Virgin I, Styring S (1990) Light-dependent degradation of the D1 protein in photosystem II is accelerated after inhibition of the water-splitting reaction. Biochemistry 29:6179–6186. doi:10.1021/bi00478a010

    Article  PubMed  Google Scholar 

  • Jung J, Kim H-S (1990) The chromophores as endogenous sensitizers involved in the photogeneration of singlet oxygen in spinach thylakoids. Photochem Photobiol 52:1003–1009. doi:10.1111/j.1751-1097.1990.tb01817.x

    Article  CAS  Google Scholar 

  • Kamata T, Hiramoto H, Morita N, Shen J-R, Mann NH, Yamamoto Y (2005) Quality control of photosystem II: an FtsH protease plays an essential role in the turnover of the reaction center D1 protein in Synechocystis PCC 6803 under heat stress as well as light stress conditions. Photochem Photobiol Sci 4:983–990. doi:10.1039/b506068k

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N, Shen J-R (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100:98–103. doi:10.1073/pnas.0135651100

    Article  PubMed  CAS  Google Scholar 

  • Kapri-Pardes E, Naveh L, Adam Z (2007) The thylakoid lumen protease Deg1 is involved in the repair of photosystem II from photoinhibition in Arabidopsis. Plant Cell 19:1039–1047. doi:10.1105/tpc.106.046573

    Article  PubMed  CAS  Google Scholar 

  • Kieselbach T, Funk C (2003) The family of Deg/HtrA proteases: from Escherichia coli to Arabidopsis. Physiol Plant 119:337–346. doi:10.1034/j.1399-3054.2003.00199.x

    Article  CAS  Google Scholar 

  • Kieselbach T, Hagman Å, Andersson B, Schröder WP (1998) The thylakoid lumen of chloroplasts. Isolation and characterization. J Biol Chem 273:6710–6716. doi:10.1074/jbc.273.12.6710

    Article  PubMed  CAS  Google Scholar 

  • Koivuniemi A, Aro E-M, Andersson B (1995) Degradation of the D1- and D2-proteins of photosystem II in higher plants is regulated by reversible phosphorylation. Biochemistry 34:16022–16029. doi:10.1021/bi00049a016

    Article  PubMed  CAS  Google Scholar 

  • Komayama K, Khatoon M, Takenaka D, Horie J, Yamashita A, Yoshioka M, Nakayama Y, Yoshida M, Ohira S, Morita N, Velitchkova M, Enami I, Yamamoto Y (2007) Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochim Biophys Acta 1767:838–846. doi:10.1016/j.bbabio.2007.05.001

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Barker M, Kuvikova S, de Vries R, Mullineaux CW, Tichý M, Nixon PJ (2006) The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 281:1145–1151. doi:10.1074/jbc.M503852200

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Tichý M, Prášil O, Knoppová J, Kuviková S, de Vries R, Nixon PJ (2007) The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp. PCC 6803. Plant Cell 19:2389–2854. doi:10.1105/tpc.107.053868

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A (2004) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346. doi:10.1093/jxb/erh237

    Article  PubMed  CAS  Google Scholar 

  • Krieger A, Rutherford AW, Vass I, Hideg E (1998) Relationship between activity, D1 loss, and Mn binding in photoinhibition of photosystem II. Biochemistry 37:16262–16269. doi:10.1021/bi981243v

    Article  PubMed  CAS  Google Scholar 

  • Krzywda S, Brzozowski AM, Verma C, Karata K, Ogura T, Wilkinson AJ (2002) The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution. Structure 10:1073–1083. doi:10.1016/S0969-2126(02)00806-7

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Murata N (1979) Purification and characterization of 33 kilodalton protein of spinach chloroplasts. Biochim Biophys Acta 581:228–236

    PubMed  CAS  Google Scholar 

  • Kuwabara T, Murata N (1982) Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem II particles of spinach chloroplasts. Plant Cell Physiol 23:533–539

    CAS  Google Scholar 

  • Li G, Horváth LI, Knowles PF, Murphy DJ, Marsh D (1989) Spin label saturation transfer ESR studies of protein–lipid interactions in photosystem II-enriched membranes. Biochim Biophys Acta 987:187–192. doi:10.1016/0005-2736(89)90543-9

    Article  CAS  Google Scholar 

  • Lindahl M, Tabak S, Cseke L, Pichersky E, Andersson B, Adam Z (1996) Identification, characterization, and molecular cloning of a homologue of the bacterial FtsH protease in chloroplasts of higher plants. J Biol Chem 271:29329–29334. doi:10.1074/jbc.271.46.29329

    Article  PubMed  CAS  Google Scholar 

  • Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B (2000) The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 12:419–431

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi:10.1038/nature04224

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2007) Lipids in photosystem II: interaction with protein and cofactors. Biochim Biophys Acta 1767:509–519. doi:10.1016/j.bbabio.2006.12.009

    Article  PubMed  CAS  Google Scholar 

  • Lundin B, Hansson M, Schoefs B, Vener AV, Spetea C (2007a) The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem II reaction centre D1 protein. Plant J 49:528–539. doi:10.1111/j.1365-313X.2006.02976.x

    Article  PubMed  CAS  Google Scholar 

  • Lundin B, Thuswaldner S, Shutova T, Eshaghi S, Samuelsson G, Barber J, Andersson B, Spetea C (2007b) Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex. Biochim Biophys Acta 1767:500–508. doi:10.1016/j.bbabio.2006.10.009

    Article  PubMed  CAS  Google Scholar 

  • Lupínková L, Komenda J (2004) Oxidative modifications of the photosystem II D1 protein by reactive oxygen species: from isolated protein to cyanobacterial cells. Photochem Photobiol 79:152–162. doi:10.1562/0031-8655(2004)079<0152:OMOTPI>2.0.CO;2

    Article  PubMed  Google Scholar 

  • Lydakis-Simantiris N, Hutchison RS, Betts SD, Barry BA, Yocum CF (1999) Manganese stabilizing protein of photosystem II is a thermostable, natively unfolded polypeptide. Biochemistry 38:404–414. doi:10.1021/bi981847z

    Article  PubMed  CAS  Google Scholar 

  • Macpherson AN, Telfer A, Barber J, Truscott TG (1993) Direct detection of singlet oxygen from isolated photosystem II reaction centres. Biochim Biophys Acta 1143:301–309. doi:10.1016/0005-2728(93)90201-P

    Article  CAS  Google Scholar 

  • Minotti G, Aust SD (1987) The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem 262:1098–1104

    PubMed  CAS  Google Scholar 

  • Mishra NP, Francke C, van Gorkom HJ, Ghanotakis DF (1994) Destructive role of singlet oxygen during aerobic illumination of the photosystem II core complex. Biochim Biophys Acta 1186:81–90. doi:10.1016/0005-2728(94)90138-4

    Article  CAS  Google Scholar 

  • Miyao M (1994) Involvement of active oxygen species in degradation of the D1 protein under strong illumination in isolated subcomplexes of photosystem II. Biochemistry 33:9722–9730. doi:10.1021/bi00198a043

    Article  PubMed  CAS  Google Scholar 

  • Mizusawa N, Tomo T, Satoh K, Miyao M (2003) Degradation of the D1 protein of photosystem II under illumination in vivo: two different pathways involving cleavage or intermolecular cross-linking. Biochemistry 42:10034–10044. doi:10.1021/bi0300534

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Yamashita Y, Akasaka T, Yamamoto Y (1995) Further characterization of the loss of antenna chlorophyll-binding protein CP43 from photosystem II during donor-side photoinhibition. Biochim Biophys Acta 1228:37–42. doi:10.1016/0005-2728(94)00156-Y

    Article  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421. doi:10.1016/j.bbabio.2006.11.019

    Article  PubMed  CAS  Google Scholar 

  • Nanba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84:109–112. doi:10.1073/pnas.84.1.109

    Article  PubMed  CAS  Google Scholar 

  • Nash D, Miyao M, Murata N (1985) Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta 807:127–133. doi:10.1016/0005-2728(85)90115-X

    Article  CAS  Google Scholar 

  • Nield J, Barber J (2006) Refinement of the structural model for the photosystem II supercomplex of higher plants. Biochim Biophys Acta 1757:353–361. doi:10.1016/j.bbabio.2006.03.019

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594. doi:10.1093/emboj/20.20.5587

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330. doi:10.1021/bi036178q

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Tsuchiya D, Makyio H, Yoshida M, Morikawa K (2002) Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8. Structure 10:1415–1423. doi:10.1016/S0969-2126(02)00855-9

    Article  PubMed  CAS  Google Scholar 

  • Nixon PJ, Baker M, Boehm M, de Vries R, Komenda J (2005) FtsH-mediated repair of the photosystem II complex in response to light stress. J Exp Bot 56:357–365. doi:10.1093/jxb/eri021

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359. doi:10.1146/annurev.arplant.50.1.333

    Article  PubMed  CAS  Google Scholar 

  • Nowaczyk MM, Hebeler R, Schlodder E, Meyer HE, Warscheid B, Rögner M (2006) Psb27, a cyanobacterial lipoprotein, is involved in the repair cycle of photosystem II. Plant Cell 18:3121–3131. doi:10.1105/tpc.106.042671

    Article  PubMed  CAS  Google Scholar 

  • Ohira S, Morita N, Suh H-J, Jung J, Yamamoto Y (2005) Quality control of photosystem II under light stress—turnover of aggregates of the D1 protein in vivo. Photosynth Res 84:29–33. doi:10.1007/s11120-004-7310-7

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction. Biochemistry 44:8494–8499. doi:10.1021/bi047518q

    Article  PubMed  CAS  Google Scholar 

  • Ono T-A, Inoue Y (1983) Mn-preserving extraction of 33-, 24- and 16-kDa proteins from O2-evolving PS II particles by divalent salt-washing. FEBS Lett 164:255–260. doi:10.1016/0014-5793(83)80297-X

    Article  CAS  Google Scholar 

  • Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26:209–221. doi:10.1046/j.1365-2958.1997.5601928.x

    Article  PubMed  CAS  Google Scholar 

  • Pazos F, Heredia P, Valencia A, De Las Rivas J (2001) Threading structural model of the manganese-stabilizing protein PsbO reveals presence of two possible β-sandwich domains. Proteins 45:372–381. doi:10.1002/prot.10012

    Article  PubMed  CAS  Google Scholar 

  • Pospíšil P, Haumann M, Dittmer J, Solé VA, Dau H (2003) Stepwise transition of the tetra-manganese complex of photosystem II to a binuclear Mn2(μ-O)2 complex in response to a temperature jump: a time-resolved structural investigation employing X-ray absorption spectroscopy. Biophys J 84:1370–1386

    PubMed  Google Scholar 

  • Pospíšil P, Šnyrychová I, Nauš J (2007) Dark production of reactive oxygen species in photosystem II membrane particles at elevated temperature: EPR spin-trapping study. Biochim Biophys Acta 1767:854–859. doi:10.1016/j.bbabio.2007.02.011

    Article  PubMed  CAS  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:14–44. doi:10.1146/annurev.pp.35.060184.000311

    Article  Google Scholar 

  • Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228. doi:10.1016/0076-6879(95)48015-3

    Article  PubMed  CAS  Google Scholar 

  • Rintamäki E, Kettunen R, Aro E-M (1996) Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. J Biol Chem 271:14870–14875. doi:10.1074/jbc.271.25.14870

    Article  PubMed  Google Scholar 

  • Rokka A, Aro E-M, Herrmann RG, Andersson B, Vener AV (2000) Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature. Plant Physiol 123:1525–1535. doi:10.1104/pp.123.4.1525

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biol 57:599–621. doi:10.1146/annurev.arplant.57.032905.105401

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W, Tamura T, Hanba-Tomita Y, Murata M (2002) The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells 7:769–780. doi:10.1046/j.1365-2443.2002.00558.x

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W, Zaltsman A, Adam Z, Takahashi Y (2003) Coordinated regulation and complex formation of YELLOW VARIEGATED1 and YELLOW VARIEGATED2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell 15:2843–2855. doi:10.1105/tpc.017319

    Article  PubMed  CAS  Google Scholar 

  • Santos D, De Almeida DF (1975) Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12. J Bacteriol 124:1502–1507

    PubMed  CAS  Google Scholar 

  • Schreiber U, Hormann H, Neubauer C, Klughammer C (1995) Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22:209–220

    Article  CAS  Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of photosystem II. Biochim Biophys Acta 1277:35–60. doi:10.1016/S0005-2728(96)00102-8

    Article  PubMed  Google Scholar 

  • Shen J-R, Inoue Y (1993) Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. Biochemistry 32:1825–1832. doi:10.1021/bi00058a017

    Article  PubMed  CAS  Google Scholar 

  • Shen J-R, Ikeuchi M, Inoue Y (1992) Stoichiometric association of extrinsic cytochorome c550 and 12 kDa protein with a highly purified oxygen-evolving photosystem II core complex from Synechococcus vulcanus. FEBS Lett 301:145–149. doi:10.1016/0014-5793(92)81235-E

    Article  PubMed  CAS  Google Scholar 

  • Shi L-X, Schröder WP (2004) The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. Biochim Biophys Acta 1608:75–96. doi:10.1016/j.bbabio.2003.12.004

    Article  PubMed  CAS  Google Scholar 

  • Shutova T, Irrgang K-D, Shubin V, Klimov VV, Renger G (1997) Analysis of pH-induced structural changes of the isolated extrinsic 33 kilodalton protein of photosystem II. Biochemistry 36:6350–6358. doi:10.1021/bi963115h

    Article  PubMed  CAS  Google Scholar 

  • Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH, Nixon PJ (2003) FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp. PCC6803. Plant Cell 15:2152–2164. doi:10.1105/tpc.012609

    Article  PubMed  CAS  Google Scholar 

  • Sokolenko A, Pojidaeva E, Zinchenko V, Panichkin V, Glaser VM, Herrmann RG, Shestakov SV (2002) The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC6803 and Arabidopsis thaliana chloroplasts. Curr Genet 41:291–310. doi:10.1007/s00294-002-0309-8

    Article  PubMed  CAS  Google Scholar 

  • Spetea C, Hundal T, Lohmann F, Andersson B (1999) GTP bound to chloroplast thylakoid membranes is required for light-induced, multienzyme degradation of the photosystem II D1 protein. Proc Natl Acad Sci USA 96:6547–6552. doi:10.1073/pnas.96.11.6547

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Peng L, Guo J, Chi W, Ma J, Lu C, Zhang L (2007) Formation of Deg5 and Deg8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell 19:1347–1361. doi:10.1105/tpc.106.049510

    Article  PubMed  CAS  Google Scholar 

  • Sundby C, Melis A, Mäenpää P, Andersson B (1986) Temperature-dependent changes in the antenna size of photosystem II. Reversible conversion of photosystem IIα to photosystem IIβ. Biochim Biophys Acta 851:475–483. doi:10.1016/0005-2728(86)90084-8

    Article  CAS  Google Scholar 

  • Suzuki CK, Rep M, van Dijl JM, Suda K, Grivell LA, Schatz G (1997) ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem Sci 22:118–123. doi:10.1016/S0968-0004(97)01020-7

    Article  PubMed  CAS  Google Scholar 

  • Takahama U, Nishimura M (1975) Formation of singlet molecular oxygen in illuminated chloroplasts. Effects on photoinactivation and lipid peroxidation. Plant Cell Physiol 16:737–748

    CAS  Google Scholar 

  • Takechi K, Sodmergen M, Murata M, Motoyoshi F, Sakamoto W (2000) The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis. Plant Cell Physiol 41:1334–1346. doi:10.1093/pcp/pcd067

    Article  PubMed  CAS  Google Scholar 

  • Telfer A, Bishop SM, Phillips D, Barber J (1994) Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. J Biol Chem 269:13244–13253

    PubMed  CAS  Google Scholar 

  • Thompson LK, Blaylock R, Sturtevant JM, Brudvig GW (1989) Molecular basis of the heat denaturation of photosystem II. Biochemistry 28:6686–6695. doi:10.1021/bi00442a023

    Article  PubMed  CAS  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16:2164–2175. doi:10.1105/tpc.104.023515

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen M, Piippo M, Suorsa M, Sirpiö S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y, Aro E-M (2006) State transitions revisited—a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62:779–793. doi:10.1007/s11103-006-9088-9

    Article  PubMed  CAS  Google Scholar 

  • Tohri A, Suzuki T, Okuyama S, Kamino K, Motoki A, Hirano M, Ohta H, Shen J-R, Yamamoto Y, Enami I (2002) Comparison of the structure of the extrinsic 33 kDa protein from different organisms. Plant Cell Physiol 43:429–439. doi:10.1093/pcp/pcf053

    Article  PubMed  CAS  Google Scholar 

  • Vainonen JP, Hansson M, Vener AV (2005) STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins. J Biol Chem 280:33679–33686. doi:10.1074/jbc.M505729200

    Article  PubMed  CAS  Google Scholar 

  • Vass I, Styring S, Hundall T, Koivuniemi A, Aro E-M, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89:1408–1412. doi:10.1073/pnas.89.4.1408

    Article  PubMed  CAS  Google Scholar 

  • Vener AV (2007) Environmentally modulated phosphorylation and dynamics of proteins in photosynthetic membranes. Biochim Biophys Acta 1767:449–457. doi:10.1016/j.bbabio.2006.11.007

    Article  PubMed  CAS  Google Scholar 

  • Vener AV, Harms A, Sussman MR, Vierstra RD (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem 276:6959–6966. doi:10.1074/jbc.M009394200

    Article  PubMed  CAS  Google Scholar 

  • Wollman F-A, Diner BA (1980) Cation control of fluorescence emission, light scatter, and membrane stacking in pigment mutants of Chlamydomonas reinhardi. Arch Biochem Biophys 201:646–659. doi:10.1016/0003-9861(80)90555-X

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T, Satoh K (2005) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Xu Q, Nelson J, Bricker TM (1994) Secondary structure of the 33 kDa, extrinsic protein of photosystem II: a far-UV circular dichroism study. Biochim Biophys Acta 1188:427–431. doi:10.1016/0005-2728(94)90065-5

    Article  PubMed  Google Scholar 

  • Yamamoto Y (2001) Quality control of photosystem II. Plant Cell Physiol 42:121–128. doi:10.1093/pcp/pce022

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Akasaka T (1995) Degradation of antenna chlorophyll-binding protein CP43 during photoinhibition of photosystem II. Biochemistry 34:9038–9045. doi:10.1021/bi00028a012

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Nishimura M (1983) Organization of the O2-evolution enzyme complex in a highly active O2-evolving photosystem-II preparation. In: Inoue Y, Crofts AR, Govindjee, Murata N, Renger G, Satoh K (eds) The oxygen evolving system of photosynthesis. Academic Press Japan, Tokyo, pp 229–238

    Google Scholar 

  • Yamamoto Y, Doi M, Tamura N, Nishimura M (1981a) Release of polypeptides from highly active O2-evolving photosystem-2 preparation by tris treatment. FEBS Lett 133:265–268. doi:10.1016/0014-5793(81)80520-0

    Article  Google Scholar 

  • Yamamoto Y, Ford RC, Barber J (1981b) Relationship between thylakoid membrane fluidity and the functioning of pea chloroplasts. Plant Physiol 67:1069–1072

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Shimada S, Nishimura M (1983) Purification and molecular properties of 3 polypeptides released from a highly active O2-evolving photosystem-II preparation by tris-treatment. FEBS Lett 151:49–53. doi:10.1016/0014-5793(83)80340-8

    Article  CAS  Google Scholar 

  • Yamamoto Y, Ishikawa Y, Nakatani E, Yamada M, Zhang H, Wydrzynski T (1998) Role of an extrinsic 33 kilodalton protein of photosystem II in the turnover of the reaction center-binding protein D1 during photoinhibition. Biochemistry 37:1565–1574. doi:10.1021/bi9707640

    Article  PubMed  CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1998) Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res 57:51–59. doi:10.1023/A:1006019102619

    Article  CAS  Google Scholar 

  • Yamashita A, Nijo N, Pospíšil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y, Yamamoto Y (2008) Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem. 283:28380–28391. doi:10.1074/jbc.M710465200

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka M, Uchida S, Mori H, Komayama K, Ohira S, Morita N, Nakanishi T, Yamamoto Y (2006) Quality control of photosystem II: cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress. J Biol Chem 281:21660–21669. doi:10.1074/jbc.M602896200

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Park S, Rodermel SR (2004) The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Plant J 37:864–876. doi:10.1111/j.1365-313X.2003.02014.x

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Park S, Rodermel SR (2005) Functional redundancy of AtFtsH metalloproteases in thylakoid membrane complexes. Plant Physiol 138:1957–1966. doi:10.1104/pp.105.061234

    Article  PubMed  CAS  Google Scholar 

  • Źelisko A, Garcia-Lorenzo G, Jackowski G, Jansson S, Funk C (2005) AtFtsH6 is involved in the degradation of the light harvesting complex II during high-light acclimation and senescence. Proc Natl Acad Sci USA 102:13699–13704. doi:10.1073/pnas.0503472102

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauß N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743. doi:10.1038/35055589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (20570039) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Wesco Science Promotion Foundation, and the Ryobi Foundation to Yasusi Yamamoto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasusi Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, Y., Aminaka, R., Yoshioka, M. et al. Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98, 589–608 (2008). https://doi.org/10.1007/s11120-008-9372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9372-4

Keywords

Navigation