Skip to main content
Log in

Tools to cope with difficult-to-express proteins

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The identification of DNA coding sequences contained in the genome of many organisms coupled to the use of high throughput approaches has fueled the field of recombinant protein production. Apart from basic research interests, the growing relevance of this field is highlighted by the global sales of the top ten biopharmaceuticals on the market, which exceeds the trillion USD in a steady increasing tendency. Therefore, the demand of biological compounds seems to have a long run on the market. One of the most popular expression systems is based on Escherichia coli cells which apart from being cost-effective counts with a large selection of resources. However, a significant percentage of the genes of interest are not efficiently expressed in this system, or the expressed proteins are accumulated within aggregates, degraded or lacking the desired biological activity, being finally discarded. In some instances, expressing the gene in a homologous expression system might alleviate those drawbacks but then the process usually increases in complexity and is not as cost-effective as the prokaryotic systems. An increasing toolbox is available to approach the production and purification of those difficult-to-express proteins, including different expression systems, promoters with different strengths, cultivation media and conditions, solubilization tags and chaperone coexpression, among others. However, in most cases, the process follows a non-integrative trial and error strategy with discrete success. This review is focused on the design of the whole process by using an integrative approach, taken into account the accumulated knowledge of the pivotal factors that affect any of the key processes, in an attempt to rationalize the efforts made in this appealing field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahn JH, Kang TJ, Kim DM (2008) Tuning the expression level of recombinant proteins by modulating mRNA stability in a cell-free protein synthesis system. Biotechnol Bioeng 101:422–427

    Article  CAS  PubMed  Google Scholar 

  • Bartholomaus A, Del CC, Ignatova Z (2016) Mapping the non-standardized biases of ribosome profiling. Biol Chem 397:23–35

    Article  PubMed  Google Scholar 

  • Billman-Jacobe H, Hodgson AL, Lightowlers M, Wood PR, Radford AJ (1994) Expression of ovine gamma interferon in Escherichia coli and Corynebacterium glutamicum. Appl Environ Microbiol 60:1641–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birolo L, Tutino ML, Fontanella B, Gerday C, Mainolfi K, Pascarella S, Sannia G, Vinci F, Marino G (2000) Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling. Eur J Biochem 267:2790–2802

    Article  CAS  PubMed  Google Scholar 

  • Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759

    Article  CAS  PubMed  Google Scholar 

  • Cano-Garrido O, Rueda FL, Sanchez-Garcia L, Ruiz-Avila L, Bosser R, Villaverde A, Garcia-Fruitos E (2014) Expanding the recombinant protein quality in Lactococcus lactis. Microb Cell Factories 13:167

    Article  Google Scholar 

  • Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Chen PT, Shaw JF, Chao YP, David Ho TH, Yu SM (2010) Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis. J Agric Food Chem 58:5392–5399

    Article  CAS  PubMed  Google Scholar 

  • Cusano AM, Parrilli E, Marino G, Tutino ML (2006) A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125. Microb Cell Factories 5:40

    Article  Google Scholar 

  • Date M, Itaya H, Matsui H, Kikuchi Y (2006) Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett Appl Microbiol 42:66–70

    Article  CAS  PubMed  Google Scholar 

  • de Marco A (2015) Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Factories 14:125

    Article  Google Scholar 

  • de Ruyter PG, Kuipers OP, Beerthuyzen MM, van Alen-Boerrigter I, de Vos WM (1996) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178:3434–3439

    PubMed  PubMed Central  Google Scholar 

  • de Vos WM (2011) Systems solutions by lactic acid bacteria: from paradigms to practice. Microb Cell Fact 10(Suppl 1):S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Diao L, Dong Q, Xu Z, Yang S, Zhou J, Freudl R (2012) Functional implementation of the posttranslational SecB-SecA protein-targeting pathway in Bacillus subtilis. Appl Environ Microbiol 78:651–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Zhang D (2014) Current development in genetic engineering strategies of Bacillus species. Microb Cell Factories 13:63

    Article  Google Scholar 

  • Dragosits M, Frascotti G, Bernard-Granger L, Vazquez F, Giuliani M, Baumann K, Rodriguez-Carmona E, Tokkanen J, Parrilli E, Wiebe MG, Kunert R, Maurer M, Gasser B, Sauer M, Branduardi P, Pakula T, Saloheimo M, Penttila M, Ferrer P, Luisa TM, Villaverde A, Porro D, Mattanovich D (2011) Influence of growth temperature on the production of antibody fab fragments in different microbes: a host comparative analysis. Biotechnol Prog 27:38–46

    Article  CAS  PubMed  Google Scholar 

  • Duilio A, Madonna S, Tutino ML, Pirozzi M, Sannia G, Marino G (2004) Promoters from a cold-adapted bacterium: definition of a consensus motif and molecular characterization of UP regulative elements. Extremophiles 8:125–132

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 8:17

    Article  Google Scholar 

  • Freigassner M, Pichler H, Glieder A (2009) Tuning microbial hosts for membrane protein production. Microb Cell Factories 8:69

    Article  Google Scholar 

  • Giuliani M, Parrilli E, Sannino F, Apuzzo GA, Marino G, Tutino ML (2014) Recombinant production of a single-chain antibody fragment in Pseudoalteromonas haloplanktis TAC125. Appl Microbiol Biotechnol 98:4887–4895

    Article  CAS  PubMed  Google Scholar 

  • Gopal GJ, Kumar A (2013) Strategies for the production of recombinant protein in Escherichia coli. Protein J 32:419–425

    Article  CAS  PubMed  Google Scholar 

  • Graslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, dhe-Paganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schutz A, Heinemann U, Yokoyama S, Bussow K, Gunsalus KC (2008) Protein production and purification. Nat Methods 5:135–146

    Article  PubMed  Google Scholar 

  • Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M (2012) Engineering genes for predictable protein expression. Protein Expr Purif 83:37–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heravi KM, Wenzel M, Altenbuchner J (2011) Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Microb Cell Factories 10:83

    Article  CAS  Google Scholar 

  • Hess AK, Saffert P, Liebeton K, Ignatova Z (2015) Optimization of translation profiles enhances protein expression and solubility. PLoS One 10:e0127039

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YJ, Lundy PM, Lazaris A, Huang Y, Baldassarre H, Wang B, Turcotte C, Cote M, Bellemare A, Bilodeau AS, Brouillard S, Touati M, Herskovits P, Begin I, Neveu N, Brochu E, Pierson J, Hockley DK, Cerasoli DM, Lenz DE, Wilgus H, Karatzas CN, Langermann S (2008) Substantially improved pharmacokinetics of recombinant human butyrylcholinesterase by fusion to human serum albumin. BMC Biotechnol 8:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    CAS  PubMed  Google Scholar 

  • Jorgensen CM, Vrang A, Madsen SM (2014) Recombinant protein expression in Lactococcus lactis using the P170 expression system. FEMS Microbiol Lett 351:170–178

    Article  CAS  PubMed  Google Scholar 

  • Kakeshita H, Kageyama Y, Ara K, Ozaki K, Nakamura K (2010) Enhanced extracellular production of heterologous proteins in Bacillus subtilis by deleting the C-terminal region of the SecA secretory machinery. Mol Biotechnol 46:250–257

    Article  CAS  PubMed  Google Scholar 

  • Kamionka M (2011) Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 12:268–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DN, Jacobs TM, Kuhlman B (2016) Boosting protein stability with the computational design of beta-sheet surfaces. Protein Sci 25:702–710

    Article  CAS  PubMed  Google Scholar 

  • Kimura E (2003) Metabolic engineering of glutamate production. Adv Biochem Eng Biotechnol 79:37–57

  • Kuipers OP, Rollema HS, Siezen RJ, de Vos WM (1995) Lactococcal expression systems for protein engineering of nisin. Dev Biol Stand 85:605–613

    CAS  PubMed  Google Scholar 

  • Kunji ER, Slotboom DJ, Poolman B (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610:97–108

    Article  CAS  PubMed  Google Scholar 

  • Le LY, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Factories 4:2

    Article  Google Scholar 

  • Lebendiker M, Danieli T (2014) Production of prone-to-aggregate proteins. FEBS Lett 588:236–246

    Article  CAS  PubMed  Google Scholar 

  • Lingg N, Zhang P, Song Z, Bardor M (2012) The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis. Biotechnol J 7:1462–1472

    Article  CAS  PubMed  Google Scholar 

  • Llull D, Poquet I (2004) New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl Environ Microbiol 70:5398–5406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maertens B, Spriestersbach A, von Groll U, Roth U, Kubicek J, Gerrits M, Graf M, Liss M, Daubert D, Wagner R, Schafer F (2010) Gene optimization mechanisms: a multi-gene study reveals a high success rate of full-length human proteins expressed in Escherichia coli. Protein Sci 19:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makino T, Skretas G, Georgiou G (2011) Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Factories 10:32

    Article  CAS  Google Scholar 

  • Marini G, Luchese MD, Argondizzo AP, de Goes AC, Galler R, Alves TL, Medeiros MA, Larentis AL (2014) Experimental design approach in recombinant protein expression: determining medium composition and induction conditions for expression of pneumolysin from Streptococcus pneumoniae in Escherichia coli and preliminary purification process. BMC Biotechnol 14:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Marreddy RK, Pinto JP, Wolters JC, Geertsma ER, Fusetti F, Permentier HP, Kuipers OP, Kok J, Poolman B (2011) The response of Lactococcus lactis to membrane protein production. PLoS One 6:e24060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Alonso M, Garcia-Fruitos E, Ferrer-Miralles N, Rinas U, Villaverde A (2010) Side effects of chaperone gene co-expression in recombinant protein production. Microb Cell Factories 9:64

    Article  Google Scholar 

  • Martinez-Alonso M, Garcia-Fruitos E, Villaverde A (2008) Yield, solubility and conformational quality of soluble proteins are not simultaneously favored in recombinant Escherichia coli. Biotechnol Bioeng 101:1353–1358

    Article  CAS  PubMed  Google Scholar 

  • Meissner D, Vollstedt A, van Dijl JM, Freudl R (2007) Comparative analysis of twin-arginine (tat)-dependent protein secretion of a heterologous model protein (GFP) in three different gram-positive bacteria. Appl Microbiol Biotechnol 76:633–642

    Article  CAS  PubMed  Google Scholar 

  • Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717

    Article  CAS  PubMed  Google Scholar 

  • Mierau I, Olieman K, Mond J, Smid EJ (2005) Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Factories 4:16

    Article  Google Scholar 

  • Ming YM, Wei ZW, Lin CY, Sheng GY (2010) Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb Cell Factories 9:55

    Article  Google Scholar 

  • Monne M, Chan KW, Slotboom DJ, Kunji ER (2005) Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Sci 14:3048–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesvera J, Patek M (2011) Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 90:1641–1654

    Article  CAS  PubMed  Google Scholar 

  • Nozach H, Fruchart-Gaillard C, Fenaille F, Beau F, Ramos OH, Douzi B, Saez NJ, Moutiez M, Servent D, Gondry M, Thai R, Cuniasse P, Vincentelli R, Dive V (2013) High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb Cell Factories 12:37

    Article  CAS  Google Scholar 

  • O’Brien EP, Ciryam P, Vendruscolo M, Dobson CM (2014) Understanding the influence of codon translation rates on cotranslational protein folding. Acc Chem Res 47:1536–1544

    Article  PubMed  Google Scholar 

  • Papa R, Rippa V, Sannia G, Marino G, Duilio A (2007) An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J Biotechnol 127:199–210

    Article  CAS  PubMed  Google Scholar 

  • Parrilli E, De VD, Cirulli C, Tutino ML (2008) Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Factories 7:2

    Article  Google Scholar 

  • Parrilli E, Giuliani M, Marino G, Tutino ML (2010) Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin. Microb Cell Factories 9:19

    Article  Google Scholar 

  • Phan TT, Nguyen HD, Schumann W (2012) Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. J Biotechnol 157:167–172

    Article  CAS  PubMed  Google Scholar 

  • Piette F, D’Amico S, Struvay C, Mazzucchelli G, Renaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76:120–132

    Article  CAS  PubMed  Google Scholar 

  • Pontes DS, de Azevedo MS, Chatel JM, Langella P, Azevedo V, Miyoshi A (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 79:165–175

    Article  CAS  PubMed  Google Scholar 

  • Quax TE, Claassens NJ, Soll D, van der Oost J (2015) Codon bias as a means to fine-tune Gene expression. Mol Cell 59:149–161

    Article  CAS  PubMed  Google Scholar 

  • Reichert JM, Paquette C (2003) Clinical development of therapeutic recombinant proteins. Biotechniques 35:176–175

    CAS  PubMed  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  • Saez NJ, Nozach H, Blemont M, Vincentelli R (2014) High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli. J Vis Exp 80:e51464

    Google Scholar 

  • Saez NJ, Vincentelli R (2014) High-throughput expression screening and purification of recombinant proteins in E. coli. Methods Mol Biol 1091:33–53

    Article  CAS  PubMed  Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  CAS  PubMed  Google Scholar 

  • Schumann W (2007) Production of recombinant proteins in Bacillus subtilis. Adv Appl Microbiol 62:137–189

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Gilchrist MA (2010) Effect of correlated tRNA abundances on translation errors and evolution of codon usage bias. PLoS Genet 6:e1001128

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99:303–310

    Article  CAS  PubMed  Google Scholar 

  • Speed MA, Wang DI, King J (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 14:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Tropea JE, Waugh DS (2011) Enhancing the solubility of recombinant proteins in Escherichia coli by using hexahistidine-tagged maltose-binding protein as a fusion partner. Methods Mol Biol 705:259–274

    Article  CAS  PubMed  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007) Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77:533–541

    Article  CAS  PubMed  Google Scholar 

  • Tegel H, Tourle S, Ottosson J, Persson A (2010) Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein Expr Purif 69:159–167

    Article  CAS  PubMed  Google Scholar 

  • Teusink B, Bachmann H, Molenaar D (2011) Systems biology of lactic acid bacteria: a critical review. Microb Cell Fact 10(Suppl 1):S11

    Article  PubMed  PubMed Central  Google Scholar 

  • Toyoda M, Kimura M, Yamamoto N, Miyauchi M, Umezono T, Suzuki D (2012) Insulin glargine improves glycemic control and quality of life in type 2 diabetic patients on hemodialysis. J Nephrol 25:989–995

    Article  CAS  PubMed  Google Scholar 

  • Tutino ML, Duilio A, Parrilli R, Remaut E, Sannia G, Marino G (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5:257–264

    Article  CAS  PubMed  Google Scholar 

  • Tutino ML, Parrilli E, Giaquinto L, Duilio A, Sannia G, Feller G, Marino G (2002) Secretion of alpha-amylase from Pseudoalteromonas haloplanktis TAB23: two different pathways in different hosts. J Bacteriol 184:5814–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unzueta U, Vazquez F, Accardi G, Mendoza R, Toledo-Rubio V, Giuliani M, Sannino F, Parrilli E, Abasolo I, Schwartz S Jr, Tutino ML, Villaverde A, Corchero JL, Ferrer-Miralles N (2015) Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase a. Appl Microbiol Biotechnol 99:5863–5874

    Article  CAS  PubMed  Google Scholar 

  • Vallejo LF, Rinas U (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Factories 3:11

    Article  Google Scholar 

  • Varenne S, Buc J, Lloubes R, Lazdunski C (1984) Translation is a non-uniform process: effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 180:549–576

    Article  CAS  PubMed  Google Scholar 

  • Vazquez E, Ferrer-Miralles N, Mangues R, Corchero JL, Schwartz S Jr, Villaverde A (2009) Modular protein engineering in emerging cancer therapies. Curr Pharm Des 15:893–916

    Article  CAS  PubMed  Google Scholar 

  • Vigentini I, Merico A, Tutino ML, Compagno C, Marino G (2006) Optimization of recombinant human nerve growth factor production in the psychrophilic Pseudoalteromonas haloplanktis. J Biotechnol 127:141–150

    Article  CAS  PubMed  Google Scholar 

  • Wenzel M, Muller A, Siemann-Herzberg M, Altenbuchner J (2011) Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl Environ Microbiol 77:6419–6425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieczorek AS, Martin VJ (2010) Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Microb Cell Factories 9:69

    Article  Google Scholar 

  • Wilmes B, Hartung A, Lalk M, Liebeke M, Schweder T, Neubauer P (2010) Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis. Microb Cell Factories 9:72

    Article  Google Scholar 

  • Yim SS, An SJ, Choi JW, Ryu AJ, Jeong KJ (2014) High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl Microbiol Biotechnol 98:273–284

    Article  CAS  PubMed  Google Scholar 

  • Zhu FM, Ji SY, Zhang WW, Li W, Cao BY, Yang MM (2008) Development and application of a novel signal peptide probe vector with PGA as reporter in Bacillus subtilis WB700: twenty-four tat pathway signal peptides from Bacillus subtilis were monitored. Mol Biotechnol 39:225–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received for funding our research on protein-based nanotherapeutics and biomaterials from Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR, 2014SGR-132), FIS (PS09-00165 and PI12/00327), Fundació La Marató de TV3 (TV32009-101235, TV32013-132031, and TV32013-133930), INIA (RTA2012-00028-C02-02), MINECO (BFU2010-17450, ACI2009-0919, IT2009-0021, BIO2013-41019-P, LIPOCELL TT02, and TERARMET RTC-2014-2207-1), and from the Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (NANOLYSO, NANOPROTHER, and PENTRI projects). CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

We also acknowledge the ICTS “NANBIOSIS”, more specifically to the Protein Production Platform of CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)/IBB, at the UAB SepBioES scientific-technical service (http://www.nanbiosis.es/unit/u1-protein-production-platform-ppp/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neus Ferrer-Miralles.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saccardo, P., Corchero, J.L. & Ferrer-Miralles, N. Tools to cope with difficult-to-express proteins. Appl Microbiol Biotechnol 100, 4347–4355 (2016). https://doi.org/10.1007/s00253-016-7514-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7514-8

Keywords

Navigation