Skip to main content
Log in

Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Obtaining high levels of pure proteins remains the main bottleneck of many scientific and biotechnological studies. Among all the available recombinant expression systems, Escherichia coli facilitates gene expression by its relative simplicity, inexpensive and fast cultivation, well-known genetics and the large number of tools available for its biotechnological application. However, recombinant expression in E. coli is not always a straightforward procedure and major obstacles are encountered when producing many eukaryotic proteins and especially membrane proteins, linked to missing posttranslational modifications, proteolysis and aggregation. In this context, many conventional and unconventional eukaryotic hosts are under exploration and development, but in some cases linked to complex culture media or processes. In this context, alternative bacterial systems able to overcome some of the limitations posed by E. coli keeping the simplicity of prokaryotic manipulation are currently emerging as convenient hosts for protein production. We have comparatively produced a “difficult-to-express” human protein, the lysosomal enzyme alpha-galactosidase A (hGLA) in E. coli and in the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 cells (P. haloplanktis TAC125). While in E. coli the production of active hGLA was unreachable due to proteolytic instability and/or protein misfolding, the expression of hGLA gene in P. haloplanktis TAC125 allows obtaining active enzyme. These results are discussed in the context of emerging bacterial systems for protein production that represent appealing alternatives to the regular use of E. coli and also of more complex eukaryotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnard GC, Kull AR, Sharkey NS, Shaikh SS, Rittenhour AM, Burnina I, Jiang Y, Li F, Lynaugh H, Mitchell T, Nett JH, Nylen A, Potgieter TI, Prinz B, Rios SE, Zha D, Sethuraman N, Stadheim TA, Bobrowicz P (2010) High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies. J Ind Microbiol Biot 37:961–971

    Article  CAS  Google Scholar 

  • Braun P, Hu YH, Shen BH, Halleck A, Koundinya M, Harlow E, LaBaer J (2002) Proteome-scale purification of human proteins from bacteria. Proc Natl Acad Sci U S A 99:2654–2659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calhoun DH, Bishop DF, Bernstein HS, Quinn M, Hantzopoulos P, Desnick RJ (1985) Fabry disease: isolation of a cDNA clone encoding human alpha-galactosidase A. Proc Natl Acad Sci U S A 82:7364–7368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YS, Jin M, Egborge T, Coppola G, Andre J, Calhoun DH (2000a) Expression and characterization of glycosylated and catalytically active recombinant human alpha-galactosidase a produced in Pichia pastoris. Protein Expr Purif 20:472–484

    Article  CAS  PubMed  Google Scholar 

  • Chen YS, Jin M, Goodrich L, Smith G, Coppola G, Calhoun DH (2000b) Purification and characterization of human alpha-galactosidase A expressed in insect cells using a baculovirus vector. Protein Expr Purif 20:228–236

    Article  CAS  PubMed  Google Scholar 

  • Corchero JL, Mendoza R, Lorenzo J, Rodriguez-Sureda V, Dominguez C, Vazquez E, Ferrer-Miralles N, Villaverde A (2011) Integrated approach to produce a recombinant, His-tagged human alpha-galactosidase A in mammalian cells. Biotechnol Prog 27:1206–1217

    Article  CAS  PubMed  Google Scholar 

  • Corchero JL, Mendoza R, Ferrer-Miralles N, Montras A, Martinez LM, Villaverde A (2012) Enzymatic characterization of highly stable human alpha-galactosidase A displayed on magnetic particles. Biochem Eng J 67:20–27

    Article  CAS  Google Scholar 

  • Cusano AM, Parrilli E, Marino G, Tutino ML (2006) A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125. Microb Cell Fact 5:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  PubMed  Google Scholar 

  • Dragosits M, Frascotti G, Bernard-Granger L, Vazquez F, Giuliani M, Baumann K, Rodriguez-Carmona E, Tokkanen J, Parrilli E, Wiebe MG, Kunert R, Maurer M, Gasser B, Sauer M, Branduardi P, Pakula T, Saloheimo M, Penttila M, Ferrer P, Tutino ML, Villaverde A, Porro D, Mattanovich D (2011) Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis. Biotechnol Prog 27:38–46

    Article  CAS  PubMed  Google Scholar 

  • Duilio A, Madonna S, Tutino ML, Pirozzi M, Sannia G, Marino G (2004a) Promoters from a cold-adapted bacterium: definition of a consensus motif and molecular characterization of UP regulative elements. Extremophiles 8:125–132

    Article  CAS  PubMed  Google Scholar 

  • Duilio A, Tutino ML, Marino G (2004b) Recombinant protein production in Antarctic Gram-negative bacteria. Methods Mol Biol (Clifton, N J ) 267:225–237

    CAS  Google Scholar 

  • Espargaro A, Villar-Pique A, Sabate R, Ventura S (2012) Yeast prions form infectious amyloid inclusion bodies in bacteria. Microb Cell Factories 11:89

    Article  CAS  Google Scholar 

  • Ferreira JP, Overton KW, Wang CL (2013) Tuning gene expression with synthetic upstream open reading frames. Proc Natl Acad Sci U S A 110:11284–11289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garman SC, Garboczi DN (2002) Structural basis of Fabry disease. Mol Genet Metab 77:3–11

    Article  CAS  PubMed  Google Scholar 

  • Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337:319–335

    Article  CAS  PubMed  Google Scholar 

  • Giuliani M, Parrilli E, Sannino F, Apuzzo GA, Marino G, Tutino ML (2014) Recombinant production of a single-chain antibody fragment in Pseudoalteromonas haloplanktis TAC125. Appl Microbiol Biotechnol 98:4887–4895

    Article  CAS  PubMed  Google Scholar 

  • Gotlib RW, Bishop DF, Wang AM, Zeidner KM, Ioannou YA, Adler DA, Disteche CM, Desnick RJ (1996) The entire genomic sequence and cDNA expression of mouse alpha-galactosidase A. Biochem Mol Med 57:139–148

    Article  CAS  PubMed  Google Scholar 

  • Hantzopoulos PA, Calhoun DH (1987) Expression of the human Alpha-galactosidase-A in Escherichia coli-K-12. Gene 57:159–169

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JM, Besserer GM, Madej M, Bui HQ, Kwon S, Abramson J (2010) Bridging the gap: a GFP-based strategy for overexpression and purification of membrane proteins with intra and extracellular C-termini. Protein Sci 19:868–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inaba K (2009) Disulfide Bond formation system in Escherichia coli. J Biochem 146:591–597

    Article  CAS  PubMed  Google Scholar 

  • Ioannou YA, Zeidner KM, Grace ME, Desnick RJ (1998) Human alpha-galactosidase A: glycosylation site 3 is essential for enzyme solubility. Biochem J 332:789–797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolaj O, Spada S, Robin S, Wall JG (2009) Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb Cell Factories 8:9

    Article  Google Scholar 

  • Lemansky P, Bishop DF, Desnick RJ, Hasilik A, Vonfigura K (1987) Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for Different Mutations in Fabry Disease. J Biol Chem 262:2062–2065

    CAS  PubMed  Google Scholar 

  • Liao YD, Jeng JC, Wang CF, Wang SC, Chang ST (2004) Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase. Protein Sci 13:1802–1810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liras A (2008) Recombinant proteins in therapeutics: haemophilia treatment as an example. Int Arch Med 1:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Martinez-Alonso M, Gonzalez-Montalban N, Garcia-Fruitos E, Villaverde A (2009) Learning about protein solubility from bacterial inclusion bodies. Microb Cell Fact 8:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D'Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamura N, Araki E, Matsuda K, Yoshimura R, Furukawa N, Tsuruzoe K, Shirotani T, Kishikawa H, Yamaguchi K, Shichiri M (1996) A carboxy-terminal truncation of human alpha-galactosidase A in a heterozygous female with Fabry disease and modification of the enzymatic activity by the carboxy-terminal domain—increased, reduced, or absent enzyme activity depending on number of amino acid residues deleted. J Clin Investig 98:1809–1817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murby M, Cedergren L, Nilsson J, Nygren PA, Hammarberg B, Nilsson B, Enfors SO, Uhlen M (1991) Stabilization of recombinant proteins from proteolytic degradation in Escherichia coli using a dual affinity fusion strategy. Biotechnol Appl Biochem 14:336–346

    CAS  PubMed  Google Scholar 

  • Nakamoto T (2009) Evolution and the universality of the mechanism of initiation of protein synthesis. Gene 432:1–6

    Article  CAS  PubMed  Google Scholar 

  • Nettleship JE, Assenberg R, Diprose JM, Rahman-Huq N, Owens RJ (2010) Recent advances in the production of proteins in insect and mammalian cells for structural biology. J Struct Biol 172:55–65

    Article  CAS  PubMed  Google Scholar 

  • Nozach H, Fruchart-Gaillard C, Fenaille F, Beau F, Ramos OHP, Douzi B, Saez NJ, Moutiez M, Servent D, Gondry M, Thai R, Cuniasse P, Vincentelli R, Dive V (2013) High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb Cell Fact 12:37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nudler E, Gottesman ME (2002) Transcription termination and anti-termination in E. coli. Genes Cells 7:755–768

    Article  CAS  PubMed  Google Scholar 

  • Panda AK (2003) Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv Biochem Eng Biotechnol 85:43–93

    CAS  PubMed  Google Scholar 

  • Parrilli E, De VD, Cirulli C, Tutino ML (2008) Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Fact 7:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Piette F, D'Amico S, Struvay C, Mazzucchelli G, Renaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76:120–132

    Article  CAS  PubMed  Google Scholar 

  • Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667

    Article  CAS  PubMed  Google Scholar 

  • Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Ohno K, Sakuraba H (2013) Comparative study of structural changes caused by different substitutions at the same residue on alpha-galactosidase A. PLoS One 8:e84267

    Article  PubMed Central  PubMed  Google Scholar 

  • Sallach RE, Conticello VP, Chaikof EL (2009) Expression of a recombinant elastin-like protein in Pichia pastoris. Biotechnol Prog 25:1810–1818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Savitsky P, Bray J, Cooper CD, Marsden BD, Mahajan P, Burgess-Brown NA, Gileadi O (2010) High-throughput production of human proteins for crystallization: the SGC experience. J Struct Biol 172:3–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tascon RI, Rodriguez-Ferri EF, Gutierrez-Martin CB, Rodriguez-Barbosa I, Berche P, Vazquez-Boland JA (1993) Transposon mutagenesis in Actinobacillus pleuropneumoniae with A Tn10 Derivative. J Bacteriol 175:5717–5722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torres LL, Ferreras ER, Cantero A, Hidalgo A, Berenguer J (2012) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 11:105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallejo LF, Rinas U (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 3:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Vigentini I, Merico A, Tutino ML, Compagno C, Marino G (2006) Optimization of recombinant human nerve growth factor production in the psychrophilic Pseudoalteromonas haloplanktis. J Biotechnol 127:141–150

    Article  CAS  PubMed  Google Scholar 

  • Wacker M, Feldman MF, Callewaert N, Kowarik M, Clarke BR, Pohl NL, Hernandez M, Vines ED, Valvano MA, Whitfield C, Aebi M (2006) Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl Acad Sci U S A 103:7088–7093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao Q, Zhang F, Nacev BA, Liu JO, Pei D (2010a) Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochem-US 49:5588–5599

    Article  CAS  Google Scholar 

  • Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma LC, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GV, Tong SN, Wang D, Wang H, Zhao L, Montelione GT, Acton TB (2010b) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172:21–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yasuda K, Chang HH, Wu HL, Ishii S, Fan JQ (2004) Efficient and rapid purification of recombinant human alpha-galactosidase A by affinity column chromatography. Protein Expr Purif 37:499–506

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ERANET-IB08-007 project from the European Union and its linked national project EUI2008-03610 to AV. We also appreciate the support from EME2007-08 to NFM from Universitat Autonoma de Barcelona, from Antartide 2010 to MLT and EP, from MIUR Azioni Integrate Italia-Spagna 2010 Prot. IT10LECLM9 to MLT, from MINECO (IT2009-0021) to AV and LT, from AGAUR (2009SGR-108) to AV. AV is also supported by The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Spain), an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. PS has received predoctoral fellowship from ISCIII, and AV has been distinguished with an ICREA ACADEMIA award (Catalonia, Spain).

Conflict of interests

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neus Ferrer-Miralles.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unzueta, U., Vázquez, F., Accardi, G. et al. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Appl Microbiol Biotechnol 99, 5863–5874 (2015). https://doi.org/10.1007/s00253-014-6328-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6328-9

Keywords

Navigation