Skip to main content
Log in

Enhanced Extracellular Production of Heterologous Proteins in Bacillus subtilis by Deleting the C-terminal Region of the SecA Secretory Machinery

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 16 July 2010

Abstract

In this study, we examined the effects of modifying the C-terminal region of the SecA protein on the production of heterologous proteins in Bacillus subtilis. SecA was selected as a candidate among the components of the Sec system due to its ability to interact directly with both the precursors and membrane translocases. A phylogenetic comparison demonstrated that the C-terminal region is not well conserved among eubacterial SecA proteins. The deletion of the 61 amino acids at the C-terminal region led to an 83% increase in extracellular alkaliphilic Bacillus sp. thermostable alkaline cellulase (Egl-237) activity. Moreover, the productivity of human interferon α (hIFN-α2b) was increased by 2.2-fold compared to the wild-type SecA, by deletion of these 61 amino acids. We indicated that the deletion of the C-terminal domain (CTD) of SecA enhanced the secretion of two different heterologous protein, Egl-237 and hIFN-α2b. This study provides a useful method to enhance the extracellular production of heterologous proteins in B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Braun, P., Gerritse, G., van Dijl, J. M., & Quax, W. J. (1999). Improving protein secretion by engineering components of the bacterial translocation machinery. Current Opinion in Biotechnology, 10, 376–381.

    Article  CAS  Google Scholar 

  2. Tjalsma, H., Bolhuis, A., Jongbloed, J. D., Bron, S., & van Dijl, J. M. (2000). Signal peptide-dependent protein transport in Bacillus subtilis: A genome-based survey of the secretome. Microbiology and Molecular Biology Reviews, 64, 515–547.

    Article  CAS  Google Scholar 

  3. Westers, L., Westers, H., & Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism. Biochimica et Biophysica Acta, 1694, 299–310.

    CAS  Google Scholar 

  4. Tjalsma, H., Antelmann, H., Jongbloed, J. D., Braun, P. G., Darmon, E., Dorenbos, R., et al. (2004). Proteomics of protein secretion by Bacillus subtilis: Separating the “secrets” of the secretome. Microbiology and Molecular Biology Reviews, 68, 207–233.

    Article  CAS  Google Scholar 

  5. Yamane, K., Bunai, K., & Kakeshita, H. (2004). Protein traffic for secretion and related machinery of Bacillus subtilis. Bioscience Biotechnology Biochemistry, 68, 2007–2023.

    Article  CAS  Google Scholar 

  6. van Wely, K. H., Swaving, J., Freudl, R., & Driessen, A. J. (2001). Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiology Reviews, 25, 437–454.

    Article  Google Scholar 

  7. Harwood, C. R., & Cranenburgh, R. (2008). Bacillus protein secretion: An unfolding story. Trends in Microbiology, 16, 73–79.

    CAS  Google Scholar 

  8. Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P., & Wickner, W. (1990). The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell, 63, 269–279.

    Article  CAS  Google Scholar 

  9. Fekkes, P., van der Does, C., & Driessen, A. J. (1997). The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. The EMBO Journal, 16, 6105–6113.

    Article  CAS  Google Scholar 

  10. Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., et al. (1997). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 390, 249–256.

    Article  CAS  Google Scholar 

  11. van Wely, K. H., Swaving, J., Klein, M., Freudl, R., & Driessen, A. J. (2000). The carboxyl terminus of the Bacillus subtilis SecA is dispensable for protein secretion and viability. Microbiology, 146, 2573–2581.

    Google Scholar 

  12. Henner, D. J. (1990). Inducible expression of regulatory genes in Bacillus subtilis. Methods in Enzymology, 185, 223–228.

    Article  CAS  Google Scholar 

  13. Morimoto, T., Kadoya, R., Endo, K., Tohata, M., Sawada, K., Liu, S., et al. (2008). Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Research, 15, 73–81.

    Article  CAS  Google Scholar 

  14. Hakamada, Y., Hatada, Y., Koike, K., Yoshimatsu, T., Kawai, S., Kobayashi, T., et al. (2000). Deduced amino acid sequence and possible catalytic residues of a thermostable, alkaline cellulase from an alkaliphilic bacillus strain. Bioscience Biotechnology Biochemistry, 64, 2281–2289.

    Article  CAS  Google Scholar 

  15. Kakeshita, H., Oguro, A., Amikura, R., Nakamura, K., & Yamane, K. (2000). Expression of the ftsY gene, encoding a homologue of the α subunit of mammalian signal recognition particle receptor, is controlled by different promoters in vegetative and sporulating cells of Bacillus subtilis. Microbiology, 146, 2595–2603.

    CAS  Google Scholar 

  16. Takamatsu, H., Fuma, S., Nakamura, K., Sadaie, Y., Shinkai, A., Matsuyama, S., et al. (1992). In vivo and in vitro characterization of the secA gene product of Bacillus subtilis. Journal of Bacteriology, 174, 4308–4316.

    CAS  Google Scholar 

  17. Matsuzaki, H., Yamane, K., Yamaguchi, K., Nagata, Y., & Maruo, B. (1974). Hybrid α-amylases produced by transformants of Bacillus subtilis. I. Purification and characterization of extracellular α-amylases produced by the parental strains and transformants. Biochemica et Biophysica Acta, 365, 235–247.

    CAS  Google Scholar 

  18. Herbort, M., Klein, M., Manting, E. H., Driessen, A. J., & Freudl, R. J. (1999). Temporal expression of the Bacillus subtilis secA gene, encoding a central component of the preprotein translocase. Journal of Bacteriology, 181, 493–500.

    CAS  Google Scholar 

  19. Ling, L., Xu, Z., Li, W., Shuai, J., Lu, P., & Hu, C. (2007). Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnology Advances, 25, 1–12.

    Article  Google Scholar 

  20. Li, W., Zhou, X., & Lu, P. (2004). Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Research in Microbiology, 155, 605–610.

    Article  CAS  Google Scholar 

  21. Kouwen, T. R., Dubois, J. Y., Freudl, R., Quax, W. J., & van Dijl, J. M. (2008). Modulation of thiol-disulfide oxidoreductases for increased production of disulfide-bond-containing proteins in Bacillus subtilis. Applied Environmental Microbiology, 74, 7536–7545.

    Article  CAS  Google Scholar 

  22. Kouwen, T. R., Nielsen, A. K., Denham, E. L., Dubois, J. Y., Dorenbos, R., Rasmussen, M. D., et al. (2010). Contributions of the pre- and pro-regions of a Staphylococcus hyicus lipase to secretion of a heterologous protein by Bacillus subtilis. Applied Environmental Microbiology, 76, 659–669.

    Article  CAS  Google Scholar 

  23. Brockmeier, U., Caspers, M., Freudl, R., Jockwer, A., Noll, T., & Eggert, T. (2006). Systematic screening of all signal peptides from Bacillus subtilis: A powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. Journal of Molecular Biology, 362, 393–402.

    Article  CAS  Google Scholar 

  24. Bolhuis, A., Tjalsma, H., Smith, H. E., de Jong, A., Meima, R., Venema, G., et al. (1999). Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Applied Environmental Microbiology, 65, 2934–2941.

    CAS  Google Scholar 

  25. Sarvas, M., Harwood, C. R., Bron, S., & van Dijl, J. M. (2004). Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochimica et Biophysica Acta, 1694, 311–327.

    CAS  Google Scholar 

  26. Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., et al. (2002). Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science, 297, 2018–2026.

    Article  CAS  Google Scholar 

  27. Mostertz, J., Scharf, C., Hecker, M., & Homuth, G. (2004). Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology, 150, 497–512.

    Article  CAS  Google Scholar 

  28. Takase, T., Mizuno, H., & Yamane, K. (1988). NH2-terminal processing of Bacillus subtilis α-amylase. Journal of Biological Chemistry, 263, 11548–11553.

    CAS  Google Scholar 

Download references

Acknowledgments

This study is the subproject, ‘Development of a Technology for Creation of a Host Cell’ included within the industrial technology project, ‘Development of a Generic Technology for Production Process Starting Productive Function’ of the Ministry of Economy, Trade and Industry (METI), entrusted by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kakeshtia.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12033-010-9313-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakeshtia, H., Kageyama, Y., Ara, K. et al. Enhanced Extracellular Production of Heterologous Proteins in Bacillus subtilis by Deleting the C-terminal Region of the SecA Secretory Machinery. Mol Biotechnol 46, 250–257 (2010). https://doi.org/10.1007/s12033-010-9295-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9295-0

Keywords

Navigation