Skip to main content
Log in

10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactococcus lactis is a Gram-positive lactic acid bacterium that, in addition to its traditional use in food fermentations, is increasingly used in modern biotechnological applications. In the last 25 years great progress has been made in the development of genetic engineering tools and the molecular characterization of this species. A new versatile and tightly controlled gene expression system, based on the auto-regulation mechanism of the bacteriocin nisin, was developed 10 years ago—the NIsin Controlled gene Expression system, called NICE. This system has become one of the most successful and widely used tools for regulated gene expression in Gram-positive bacteria. The review describes, after a brief introduction of the host bacterium L. lactis, the fundaments, components and function of the NICE system. Furthermore, an extensive overview is provided of the different applications in lactococci and other Gram-positive bacteria: (1) over-expression of homologous and heterologous genes for functional studies and to obtain large quantities of specific gene products, (2) metabolic engineering, (3) expression of prokaryotic and eukaryotic membrane proteins, (4) protein secretion and anchoring in the cell envelope, (5) expression of genes with toxic products and analysis of essential genes and (6) large-scale applications. Finally, an overview is given of growth and induction conditions for lab-scale and industrial-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antiporta MH, Dunny GM (2002) ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF. J Bacteriol 184:1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnau J, Hjerl-Hansen E, Israelsen H (1997) Heterologous gene expression of bovine plasmin in Lactococcus lactis. Appl Microbiol Biotechnol 48:331–338

    Article  CAS  PubMed  Google Scholar 

  • Åvall-Jääskeläinen S, Kylä-Nikkilä K, Kahala M, Miikkulainen-Lahti T, Palva A (2002) Surface display of foreign epitopes on the Lactobacillus brevis S-layer. Appl Environ Microbiol 68:5943–5951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Axelsson L, Lindstad G, Naterstad K (2003) Development of an inducible gene expression system for Lactobacillus sakei. Lett Appl Microbiol 37:115–120

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez-Humarán LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes de Oca-Luna R, Le Loir Y (2002) Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 68:917–922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bermúdez-Humarán LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, Saucedo-Cardenas O, Montes de Oca-Luna R, Le Loir Y (2003) Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun 71:1887–1896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boels IC, Ramos A, Kleerebezem M, Devos WM (2001) Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl Environ Microbiol 67:3033–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boels IC, Kleerebezem M, de Vos WM (2003) Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Appl Environ Microbiol 69:1129–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boels IC, Beerthuyzen MM, Kosters MH, Van Kaauwen MP, Kleerebezem M, De Vos WM (2004) Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP–rhamnose biosynthesis. J Bacteriol 186:1239–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bron PA, Benchimol MG, Lambert J, Palumbo E, Deghorain M, Delcour J, Devos WM, Kleerebezem M, Hols P (2002) Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl Environ Microbiol 68:5663–5670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryan EM, Bae T, Kleerebezem H, Dunny GM (2000) Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 44:183–190

    Article  CAS  PubMed  Google Scholar 

  • Burgess C, O'Connell-Motherway M, Sybesma W, Hugenholtz J, van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70:5769–5777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campo N, Daveran-Mingot ML, Leenhouts K, Ritzenthaler P, Le Bourgeois P (2002) Cre-loxP recombination system for large genome rearrangements in Lactococcus lactis. Appl Environ Microbiol 68:2359–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatel JM, Nouaille S, Adelpatient K, Le Loir Y, Boe H, Gruss A, Wal JM, Langella P (2003) Characterization of a Lactococcus lactis strain that secretes a major epitope of bovine beta-lactoglobulin and evaluation of its immunogenicity in mice. Appl Environ Microbiol 69:6620–6627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong BF, Nielsen LK (2003) Amplifying the cellular reduction potential of Streptococcus zooepidemicus. J Biotechnol 100:33–41

    Article  CAS  PubMed  Google Scholar 

  • Christensson C, Bratt H, Collins LJ, Coolbear T, Holland R, Lubbers MW, Otoole PW, Reid JR (2002) Cloning and expression of an oligopeptidase, PepO, with novel specificity from Lactobacillus rhamnosus HN001 (DR20). Appl Environ Microbiol 68:254–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cibik R, Tailliez P, Langella P, Chapot-Chartier MP (2001) Identification of Mur, an atypical peptidoglycan hydrolase derived from Leuconostoc citreum. Appl Environ Microbiol 67:858–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Ruyter PG, Kuipers OP, Beerthuyzen MM, Alen-Boerrigter I, de Vos WM (1996a) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178:3434–3439

    Article  PubMed  PubMed Central  Google Scholar 

  • de Ruyter PG, Kuipers OP, de Vos WM (1996b) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667

    Article  PubMed  PubMed Central  Google Scholar 

  • de Ruyter PG, Kuipers OP, Meijer WC, de Vos WM (1997) Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat Biotechnol 15:976–979

    Article  PubMed  Google Scholar 

  • de Vos WD (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol Lett 46:281–295

    Article  Google Scholar 

  • de Vos WM (1999) Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. Int Dairy J 9:3–10

    Article  Google Scholar 

  • de Vos WM, Hugenholtz J (2004) Engineering metabolic highways in lactococci and other lactic acid bacteria. Trends Biotechnol 22:72–79

    Article  PubMed  CAS  Google Scholar 

  • Dieye Y, Usai S, Clier F, Gruss A, Piard JC (2001) Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183:4157–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd HM, Gasson MJ (1994) Bacteriocins of lactic acid bacteria. In: Gasson MJ, de Vos WM (eds) Genetics and biotechnology of lactic acid bacteria. Blackie, London

    Google Scholar 

  • Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubière P, Gruss A (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183:4509–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenbaum Z, Federle MJ, Marra D, de Vos WM, Kuipers OP, Kleerebezem M, Scott JR (1998) Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: comparison of induction level and promoter strength. Appl Environ Microbiol 64:2763–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enouf V, Langella P, Commissaire J, Cohen J, Corthier G (2001) Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67:1423–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández L, Beerthuyzen MM, Brown J, Siezen RJ, Coolbear T, Holland R, Kuipers OP (2000) Cloning, characterization, controlled overexpression, and inactivation of the major tributyrin esterase gene of Lactococcus lactis. Appl Environ Microbiol 66:1360–1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Francia MV, Clewell DB (2002) Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol Microbiol 45:375–395

    Article  CAS  PubMed  Google Scholar 

  • Franke CM, Tiemersma J, Venema G, Kok J (1999) Membrane topology of the lactococcal bacteriocin ATP-binding cassette transporter protein LcnC. Involvement of LcnC in lactococcin A maturation. J Biol Chem 274:8484–8490

    Article  CAS  PubMed  Google Scholar 

  • Fuglsang A (2003) Lactic acid bacteria as prime candidates for codon optimization. Biochem Biophys Res Commun 312:285–291

    Article  CAS  PubMed  Google Scholar 

  • Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasson MJ, de Vos WM (1994) Genetics and biotechnology of lactic acid bacteria. Blackie, London

    Book  Google Scholar 

  • Guillot A, Gitton C, Anglade P, Mistou MY (2003) Proteomic analysis of Lactococcus lactis, a lactic acid bacterium. Proteomics 3:337–354

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Bhattacharyya TK, Ghosh TC (2004) Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. J Biomol Struct Dyn 21:527–536

    Article  CAS  PubMed  Google Scholar 

  • Hagting A, Knol J, Hasemeier B, Streutker MR, Fang G, Poolman B, Konings WN (1997) Amplified expression, purification and functional reconstitution of the dipeptide and tripeptide transport protein of Lactococcus lactis. Eur J Biochem 247:581–587

    Article  CAS  PubMed  Google Scholar 

  • Hanniffy S, Wiedermann U, Repa A, Mercenier A, Daniel C, Fioramonti J, Tlaskolova H, Kozakova H, Israelsen H, Madsen S, Vrang A, Hols P, Delcour J, Bron P, Kleerebezem M, Wells J (2004) Potential and opportunities for use of recombinant lactic acid bacteria in human health. Adv Appl Microbiol 56:1–64

    Article  PubMed  Google Scholar 

  • Hasper HE, de Kruijff B, Breukink E (2004) Assembly and stability of nisin-lipid II pores. Biochemistry 43:11567–11575

    Article  CAS  PubMed  Google Scholar 

  • Henrich B, Klein JR, Weber B, Delorme C, Renault P, Wegmann U (2002) Food-grade delivery system for controlled gene expression in Lactococcus lactis. Appl Environ Microbiol 68:5429–5436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuberger EHML, Smits E, Poolman B (2001) Xyloside transport by XylP, a member of the galactoside–pentoside–hexuronide family. J Biol Chem 276:34465–34472

    Article  CAS  PubMed  Google Scholar 

  • Hickey RM, Twomey DP, Ross RP, Hill C (2003) Potential of the enterocin regulatory system to control expression of heterologous genes in Enterococcus. J Appl Microbiol 95:390–397

    Article  CAS  PubMed  Google Scholar 

  • Hickey RM, Ross RP, Hill C (2004) Controlled autolysis and enzyme release in a recombinant lactococcal strain expressing the metalloendopeptidase enterolysin A. Appl Environ Microbiol 70:1744–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van S II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148:1003–1013

    Article  CAS  PubMed  Google Scholar 

  • Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol 17:588–592

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, de Vos W, Hols P (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66:4112–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz J, Sybesma W, Groot MN, Wisselink W, Ladero V, Burgess K, van Sinderen D, Piard JC, Eggink G, Smid EJ, Savoy G, Sesma F, Jansen T, Hols P, Kleerebezem M (2002) Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82:217–235

    Article  CAS  PubMed  Google Scholar 

  • Hughes MJ, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG, Santangelo JD (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 70:1254–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen PR, Hammer K (1993) Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol 59:4363–4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaenhammer T, Altermann E, Arigoni F, Bolotin A, Breidt F, Broadbent J, Cano R, Chaillou S, Deutscher J, Gasson M, van de Guchte M, Guzzo J, Hartke A, Hawkins T, Hols P, Hutkins R, Kleerebezem M, Kok J, Kuipers O, Lubbers M, Maguin E, McKay L, Mills D, Nauta A, Overbeek R, Pel H, Pridmore D, Saier M, van Sinderen D, Sorokin A, Steele J, O'Sullivan D, de Vos W, Weimer B, Zagorec M, Siezen R (2002) Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82:29–58

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Hugenholtz J (2003) Metabolic pathway engineering in lactic acid bacteria. Curr Opin Biotechnol 14:232–237

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM, Kuipers OP (1997a) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63:4581–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM (1997b) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, de Vos WM, Kuipers OP (1999) The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. In: Dunny GM, Winams SC (eds) Cell–cell signalling in bacteria. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Kleerebezem M, Boels IC, Groot MN, Mierau I, Sybesma W, Hugenholtz J (2002) Metabolic engineering of Lactococcus lactis: the impact of genomics and metabolic modelling. J Biotechnol 98:199–213

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Bongers R, Rutten G, de Vos WM, Kuipers OP (2004) Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Peptides 25:1415–1424

    Article  CAS  PubMed  Google Scholar 

  • Koebmann BJ, Nilsson D, Kuipers OP, Jensen PR (2000) The membrane-bound H(+)-ATPase complex is essential for growth of Lactococcus lactis. J Bacteriol 182: 4738–4743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotelnikova EA, Gelfand MS (2002) Bacteriocin production by Gram-positive bacteria and the mechanisms of transcriptional regulation. Russ J Genet 38:628–641

    Article  CAS  Google Scholar 

  • Kuipers OP, Beerthuyzen MM, Siezen RJ, De Vos WM (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291

    Article  CAS  PubMed  Google Scholar 

  • Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304

    Article  CAS  PubMed  Google Scholar 

  • Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21

    Article  CAS  Google Scholar 

  • Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221

    Article  CAS  PubMed  Google Scholar 

  • Kunji ER, Slotboom DJ, Poolman B (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610:97–108

    Article  CAS  PubMed  Google Scholar 

  • Le Loir Y, Nouaille S, Commissaire J, Brétigny L, Gruss A, Langella P (2001a) Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67:4119–4127

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Loir Y, Nouaille S, Ribeiro L, Commissaire J, Corthier G, Gilbert S, Chatel J, L'Haridon R, Gruss A, Langella P (2001b) Secretion of heterologous proteins of therapeutical interest in Lactococcus lactis. Lait 81:217–226

    Article  Google Scholar 

  • Leroy F, Devuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78

    Article  CAS  Google Scholar 

  • Lindholm A, Smeds A, Palva A (2004) Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl Environ Microbiol 70:2061–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Looijesteijn PJ, Boels IC, Kleerebezem M, Hugenholtz J (1999) Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl Environ Microbiol 65:5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez de Felipe F, Hugenholtz J (1999) Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions. FEMS Microbiol Lett 179:461–466

    Article  CAS  PubMed  Google Scholar 

  • Lopez de Felipe F, Kleerebezem M, de Vos WM, Hugenholtz J (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 180:3804–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luoma S, Peltoniemi K, Joutsjoki V, Rantanen T, Tamminen M, Heikkinen I, Palva A (2001) Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis. Appl Environ Microbiol 67:1232–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen PL, Johansen AH, Hammer K, Brøndsted L (1999) The genetic switch regulating activity of early promoters of the temperate lactococcal bacteriophage TP901-1. J Bacteriol 181:7430–7438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolles A, Putman M, van Veen HW, Konings WN (1999) The purified and functionally reconstituted multidrug transporter LmrA of Lactococcus lactis mediates the transbilayer movement of specific fluorescent phospholipids. Biochemistry 38:16298–16306

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen G, Sørvig E, Blatny J, Naterstad K, Axelsson L, Eijsink VGH (2004) High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter. Lett Appl Microbiol 39:137–143

    Article  CAS  PubMed  Google Scholar 

  • McCormick JK, Hirt H, Waters CM, Tripp TJ, Dunny GM, Schlievert PM (2001) Antibodies to a surface-exposed, N-terminal domain of aggregation substance are not protective in the rabbit model of Enterococcus faecalis infective endocarditis. Infect Immun 69:3305–3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath S, Fitzgerald GF, van Sinderen D (2002) Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 43:509–520

    Article  CAS  PubMed  Google Scholar 

  • Mierau I, Leij P, van Swam I, Blommestein B, Floris E, Mond J, Smid EJ (2005a) Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: the case of lysostaphin. Microb Cell Fact 4:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mierau I, Olieman K, Mond J, Smid EJ (2005b) Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact 4:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyoshi A, Poquet I, Azevedo V, Commissaire J, Bermudez-Humaran L, Domakova E, Le Loir Y, Oliveira SC, Gruss A, Langella P (2002) Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol 68:3141–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neu T, Henrich B (2003) New thermosensitive delivery vector and its use to enable nisin-controlled gene expression in Lactobacillus gasseri. Appl Environ Microbiol 69:1377–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves AR, Ramos A, Costa H, van Swan II, Hugenholtz J, Kleerebezem M, de Vos W, Santos H (2002) Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl Environ Microbiol 68:6332–6342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283

    Article  CAS  PubMed  Google Scholar 

  • Nouaille S, Ribeiro LA, Miyoshi A, Pontes D, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2003) Heterologous protein production and delivery systems for Lactococcus lactis. Genet Mol Res 2:102–111

    PubMed  Google Scholar 

  • Nouaille S, Commissaire J, Gratadoux JJ, Ravn P, Bolotin A, Gruss A, Leloir Y, Langella P (2004) Influence of lipoteichoic acid D-alanylation on protein secretion in Lactococcus lactis as revealed by random mutagenesis. Appl Environ Microbiol 70:1600–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novotny R, Scheberl A, Giry-Laterriere M, Messner P, Schäffer C (2005) Gene cloning, functional expression and secretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a in Lactococcus lactis. FEMS Microbiol Lett 242:27–35

    Article  CAS  PubMed  Google Scholar 

  • Pavan S, Hols P, Delcour J, Geoffroy MC, Grangette C, Kleerebezem M, Mercenier A (2000) Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl Environ Microbiol 66:4427–4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen MB, Koebmann BJ, Jensen PR, Nilsson D (2002) Increasing acidification of nonreplicating Lactococcus lactis delta-thyA mutants by incorporating ATPase activity. Appl Environ Microbiol 68:5249–5257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S, de Vos WM (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 62:1008–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poolman B, Konings WN (1988) Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol 170:700–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Neves AR, Ventura R, Maycock C, López P, Santos H (2004) Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis. Microbiology 150:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Ravn P, Arnau J, Madsen SM, Vrang A, Israelsen H (2003) Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 149:2193–2201

    Article  CAS  PubMed  Google Scholar 

  • Ribardo DA, McIver KS (2003) amrA encodes a putative membrane protein necessary for maximal exponential phase expression of the Mga virulence regulon in Streptococcus pyogenes. Mol Microbiol 50:673–685

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P (2002) Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68:910–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422–430

    Article  CAS  PubMed  Google Scholar 

  • Rigoulay C, Poquet I, Madsen SM, Gruss A (2004) Expression of the Staphylococcus aureus surface proteins Htra(1) and Htra(2) in Lactococcus lactis. FEMS Microbiol Lett 237:279–288

    CAS  PubMed  Google Scholar 

  • Sakamoto K, Margolles A, van Veen HW, Konings WN (2001) Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J Bacteriol 183:5371–5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiraldi C, Adduci V, Valli V, Maresca C, Giuliano M, Lamberti M, Carteni M, De Rosa M (2003) High cell density cultivation of probiotics and lactic acid production. Biotechnol Bioeng 82:213–222

    Article  CAS  PubMed  Google Scholar 

  • Simões-Barbosa A, Abreu H, Silva Neto A, Gruss A, Langella P (2004) A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression. Appl Microbiol Biotechnol 65:61–67

    Article  PubMed  CAS  Google Scholar 

  • Smid EJ, Molenaar D, Hugenholtz J, de Vos WM, Teusink B (2005) Functional ingredient production: application of global metabolic models. Curr Opin Biotechnol 16:190–197

    Article  CAS  PubMed  Google Scholar 

  • Steen A, Buist G, Leenhouts KJ, El Khattabi M, Grijpstra F, Zomer AL, Venema G, Kuipers OP, Kok J (2003) Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 278:23874–23881

    Article  CAS  PubMed  Google Scholar 

  • Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz JR (2003a) Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69:3069–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sybesma W, van den Born E, Starrenburg M, Mierau I, Kleerebezem M, de Vos WM, Hugenholtz J (2003b) Controlled modulation of folate polyglutamyl tail length by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69:7101–7107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teuber M (1995) The genus Lactococcus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Blackie, London, pp 173–234

    Chapter  Google Scholar 

  • Ton-That H, Marraffini LA, Schneewind O (2004) Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 11:269–278

    Article  CAS  Google Scholar 

  • van Asseldonk M, de Vos WM, Simons G (1993) Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha-amylase. Mol Gen Genet 240:428–434

    Article  PubMed  Google Scholar 

  • van Kraaij C, de Vos WM, Siezen RJ, Kuipers OP (1999) Lantibiotics: biosynthesis, mode of action and applications. Nat Prod Rep 16:575–587

    Article  PubMed  Google Scholar 

  • Waters CM, Wells CL, Dunny GM (2003) The aggregation domain of aggregation substance, not the RGD motifs, is critical for efficient internalization by HT-29 enterocytes. Infect Immun 71:5682–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters CM, Hirt H, McCormick JK, Schlievert PM, Wells CL, Dunny GM (2004) An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol Microbiol 52:1159–1171

    Article  CAS  PubMed  Google Scholar 

  • Wegmann U, Klein JR, Drumm I, Kuipers OP, Henrich B (1999) Introduction of peptidase genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and controlled expression. Appl Environ Microbiol 65:4729–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood BJB, Warner PJ (2003) Genetics of lactic acid bacteria. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  • Wouters JA, Kamphuis HH, Hugenholtz J, Kuipers OP, de Vos WM, Abee T (2000) Changes in glycolytic activity of Lactococcus lactis induced by low temperature. Appl Environ Microbiol 66:3686–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Manias DA, Dunny GM (2000) Regulation of intron function: efficient splicing in vivo of a bacterial group II intron requires a functional promoter within the intron. Mol Microbiol 37:639–651

    Article  CAS  PubMed  Google Scholar 

  • Zúñiga M, Franke-Fayard B, Venema G, Kok J, Nauta A (2002) Characterization of the putative replisome organizer of the lactococcal bacteriophage r1t. J Virol 76:10234–10244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Mierau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mierau, I., Kleerebezem, M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis . Appl Microbiol Biotechnol 68, 705–717 (2005). https://doi.org/10.1007/s00253-005-0107-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0107-6

Keywords

Navigation