Skip to main content
Log in

Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In contrast to the general protein secretion (Sec) system, the twin-arginine translocation (Tat) export pathway allows the translocation of proteins across the bacterial plasma membrane in a fully folded conformation. Due to this feature, the Tat pathway provides an attractive alternative to the secretory production of heterologous proteins via the Sec system. In this study, the potential for Tat-dependent heterologous protein secretion was compared in the three Gram-positive bacteria Staphylococcus carnosus, Bacillus subtilis, and Corynebacterium glutamicum using green fluorescent protein (GFP) as a model protein. In all three microorganisms, fusion of a Tat signal peptide to GFP resulted in its Tat-dependent translocation across the corresponding cytoplasmic membranes. However, striking differences with respect to the final localization and folding status of the exported GFP were observed. In S. carnosus, GFP was trapped entirely in the cell wall and not released into the supernatant. In B. subtilis, GFP was secreted into the supernatant, however, in an inactive form. In contrast, C. glutamicum effectively secreted active GFP. Our results clearly demonstrate that a comparative evaluation of different Gram-positive host microorganisms is a crucial step on the way to an efficient Tat-mediated secretory production process for a desired heterologous target protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe S, Takayama KI, Kinoshita S (1967) Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol 13:279–301

    Google Scholar 

  • Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berks BC (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22:393–404

    CAS  PubMed  Google Scholar 

  • Berks BC, Palmer T, Sargent F (2003) The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187–254

    CAS  PubMed  Google Scholar 

  • Billman-Jacobe H, Wang LF, Kortt A, Stewart D, Radford A (1995) Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl Environ Microbiol 61:1610–1613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blaudeck N, Sprenger GA, Freudl R, Wiegert T (2001) Specificity of signal peptide recognition in Tat-dependent bacterial protein translocation. J Bacteriol 183:604–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blaudeck N, Kreutzenbeck P, Müller M, Sprenger GA, Freudl R (2005) Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J Biol Chem 280:3426–3432

    CAS  PubMed  Google Scholar 

  • Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, Venema G, Bron S, van Dijl JM (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl Environ Microbiol 65:2934–2941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    CAS  PubMed  Google Scholar 

  • Daffé M (2005) The cell envelope of corynebacteria. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USA, pp 121–148

    Google Scholar 

  • Date M, Yokoyama KI, Umezawa Y, Matsui H, Kikuchi Y (2004) High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. J Biotechnol 110:219–226

    CAS  PubMed  Google Scholar 

  • Date M, Itaya H, Matsui H, Kikuchi Y (2006) Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett Appl Microbiol 42:66–70

    CAS  PubMed  Google Scholar 

  • de Keyzer J, van der Does C, Driessen AJM (2003) The bacterial translocase: a dynamic protein channel complex. Cell Mol Life Sci 60:2034–2052

    PubMed  Google Scholar 

  • DeLisa MP, Tullman D, Georgiou G (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA 100:6115–6120

    CAS  PubMed  Google Scholar 

  • Demchick P, Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178:768–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dilsen S, Paul W, Sandgathe A, Tippe D, Freudl R, Thömmes J, Kula RM, Takors R, Wandrey C, Weuster-Botz D (2000) Fed-batch production of recombinant human calcitonin precursor fusion protein using Staphylococcus carnosus as an expression-secretion system. Appl Microbiol Biotechnol 54:361–369

    CAS  PubMed  Google Scholar 

  • Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102:93–98

    CAS  PubMed  Google Scholar 

  • Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182:4068–4076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher AC, DeLisa MP (2004) A little help from my friends: quality control of presecretory proteins in bacteria. J Bacteriol 186:7467–7473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freudl R (2005) Staphylococcus carnosus and other Gram-positive bacteria. In: Gellissen G (ed) Production of recombinant proteins. Wiley-VCH, Weinheim, Germany, pp 67–87

    Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Harwood CR (1992) Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol 10:247–256

    CAS  PubMed  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    CAS  PubMed  Google Scholar 

  • Jensen CL, Stephenson K, Jorgensen ST, Harwood C (2000) Cell-associated degradation affects the yield of secreted engineered and heterologous proteins in the Bacillus subtilis expression system. Microbiology (UK) 146:2583–2594

    CAS  Google Scholar 

  • Jongbloed JDH, Martin U, Antelmann H, Hecker M, Tjalsma H, Venema G, Bron S, van Dijl JM, Müller J (2000) TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J Biol Chem 275:41350–41357

    CAS  PubMed  Google Scholar 

  • Jongbloed JDH, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM (2004) Two minimal Tat translocases in Bacillus. Mol Microbiol 54:1319–1325

    CAS  PubMed  Google Scholar 

  • Jongbloed JDH, van der Ploeg R, van Dijl JM (2006) Bifunctional TatA subunits in minimal Tat protein translocases. Trends Microbiol 14:2–4

    CAS  PubMed  Google Scholar 

  • Kikuchi Y, Date M, Itaya H, Matsui K, Wu LF (2006) Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol 72:7183–7192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liebl W, Sinskey AJ, Schleifer KH (1992) Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J Bacteriol 174:1854–1861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenstrauß U, Brüser T (2006) Conservation and variation between Rhodobacter capsulatus and Escherichia coli Tat systems. J Bacteriol 188:7807–7814

    PubMed  PubMed Central  Google Scholar 

  • Madsen SM, Beck HC, Ravn P, Vrang A, Hansen AM, Israelsen H (2002) Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme. Appl Environ Microbiol 68:4007–4014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meens J, Herbort M, Klein M, Freudl R (1997) Use of the pre-pro part of Staphylococcus hyicus lipase as a carrier for secretion of Escherichia coli outer membrane protein A (OmpA) prevents proteolytic degradation of OmpA by cell-associated protease(s) in two different Gram-positive bacteria. Appl Environ Microbiol 63:2814–2820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JH (1972) A Short Course in Bacterial Genetics. A laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol 9:97–109

    CAS  PubMed  Google Scholar 

  • Posey JE, Shinnick TM, Quinn FD (2006) Characterization of the twin-arginine translocase secretion system of Mycobacterium smegmatis. J Bacteriol 188:1332–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quax WJ (1997) Merits of secretion of heterologous proteins from industrial microorganisms. Folia Microbiol 42:99–103

    CAS  Google Scholar 

  • Robinson C, Bolhuis A (2001) Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol 2:350–358

    CAS  PubMed  Google Scholar 

  • Rygus T, Scheler A, Allmansberger R, Hillen W (1991) Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Arch Microbiol 155:535–542

    CAS  PubMed  Google Scholar 

  • Salim K, Haedens V, Content J, Leblon G, Huygen K (1997) Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl Environ Microbiol 63:4392–4400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sandgathe A, Tippe D, Dilsen S, Meens J, Halfar M, Weuster-Botz D, Freudl R, Thömmes J, Kula MR (2003) Production of a human calcitonin precursor with Staphylococcus carnosus: secretory expression and single-step recovery by expanded bed adsorption. Process Biochem 38:1351–1363

    CAS  Google Scholar 

  • Santini CL, Bernadac A, Zhang M, Chanal A, Ize B, Blanco C, Wu LF (2001) Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276:8159–8164

    CAS  PubMed  Google Scholar 

  • Schaerlaekens K, Schierova M, Lammertyn E, Geukens N, Anne J, van Mellaert L (2001) Twin-arginine translocation pathway in Streptomyces lividans. J Bacteriol 183:6727–6732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schäfer A, Schwarzer A, Kalinowski J, Pühler A (1994) Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13022 and analysis of its role in intergeneric conjugation with Escherichia coli. J Bacteriol 176:7309–7319

    PubMed  PubMed Central  Google Scholar 

  • Schleifer KH, Fischer U (1982) Description of a new species of the genus Staphylococcus: Staphylococcus carnosus. Int J Syst Bacteriol 32:153–156

    CAS  Google Scholar 

  • Simonen M, Palva I (1993) Protein secretion in Bacillus species. Microbiol Rev 57:109–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturm A, Schierhorn A, Lindenstrauss U, Lilie H, Brüser T (2006) YcdB from Escherichia coli reveals a novel class of Tat-dependently translocated hemoproteins. J Biol Chem 281:13972–13978

    CAS  PubMed  Google Scholar 

  • Thiemann V, Saake B, Vollstedt A, Schäfer T, Puls J, Bertoldo C, Freudl R, Antranikian G (2006) Heterologous expression and characterization of a novel branching enzyme from the thermoalkaliphilic anaerobic bacterium Anaerobranca gottschalkii. Appl Microbiol Biotechnol 72:60–71

    CAS  PubMed  Google Scholar 

  • Thomas JD, Daniel RA, Errington J, Robinson C (2001) Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol Microbiol 39:47–53

    CAS  PubMed  Google Scholar 

  • van Dijl JM, Braun PG, Robinson C, Quax WJ, Antelmann H, Hecker M, Müller J, Tjalsma H, Bron S, Jongbloed JDH (2002) Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. J Biotechnol 98:243–254

    PubMed  Google Scholar 

  • van Wely KHM, Swaving J, Freudl R, Driessen AJM (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454

    PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to H. Sahm for his strong support of our work on bacterial protein secretion during now almost 20 years. We thank A. Bida for excellent technical assistance. R. Freudl and J.M. van Dijl were supported in part by European Union Grant LSHG-CT-2004-005257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Freudl.

Additional information

This paper is dedicated to Hermann Sahm on the occasion of his 65th birthday.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meissner, D., Vollstedt, A., van Dijl, J.M. et al. Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. Appl Microbiol Biotechnol 76, 633–642 (2007). https://doi.org/10.1007/s00253-007-0934-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0934-8

Keywords

Navigation