Skip to main content

Advertisement

Log in

Regulatory and metabolic network of rhamnolipid biosynthesis: Traditional and advanced engineering towards biotechnological production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

During the last decade, the demand for economical and sustainable bioprocesses replacing petrochemical-derived products has significantly increased. Rhamnolipids are interesting biosurfactants that might possess a broad industrial application range. However, despite of 60 years of research in the area of rhamnolipid production, the economic feasibility of these glycolipids is pending. Although the biosynthesis and regulatory network are in a big part known, the actual incidents on the cellular and process level during bioreactor cultivation are not mastered. Traditional engineering by random and targeted genetic alteration, process design, and recombinant strategies did not succeed by now. For enhanced process development, there is an urgent need of in-depth information about the rhamnolipid production regulation during bioreactor cultivation to design knowledge-based genetic and process engineering strategies. Rhamnolipids are structurally comparable, simple secondary metabolites and thus have the potential to become instrumental in future secondary metabolite engineering by systems biotechnology. This review summarizes current knowledge about the regulatory and metabolic network of rhamnolipid synthesis and discusses traditional and advanced engineering strategies performed for rhamnolipid production improvement focusing on Pseudomonas aeruginosa. Finally, the opportunities of applying the systems biotechnology toolbox on the whole-cell biocatalyst and bioprocess level for further rhamnolipid production optimization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abalos A, Pinazo A, Infante M, Casals M, García F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    Article  CAS  Google Scholar 

  • Abalos A, Maximo F, Manresa MA, Bastida J (2002) Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10. J Chem Technol Biotechnol 77:777–784

    Article  CAS  Google Scholar 

  • Abdel-Mawgoud AM, Hausmann R, Lépine F, Müller MM, Déziel E (2010a) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation and bioengineering of production. In: Sobéron-Chavez G (ed) Biosurfactants, 1st edn., VII. Springer, Berlin, 216 pp (hardcover edn.)

  • Abdel-Mawgoud AM, Lepine F, Deziel E (2010b) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  Google Scholar 

  • Albus AM, Pesci EC, RunyenJanecky LJ, West SEH, Iglewski BH (1997) Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3928–3935

    CAS  Google Scholar 

  • Alibaba.com (2011) List of APG suppliers in Asia. Alibaba.com Hong Kong Limited and licensors. Available at http://www.alibaba.com/products/alkyl_poly_glycosides.html?os=y. Accessed 26 March 2010

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  Google Scholar 

  • Arino S, Marchal R, Vandecasteele JP (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45:162–168

    Article  CAS  Google Scholar 

  • Babu PS, Vaidya AN, Bal AS, Kapur R, Juwarkar A, Khanna P (1996) Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotechnol Lett 18:263–268

    CAS  Google Scholar 

  • Banat I, Franzetti A, Gandolfi I, Bestetti G, Martinotti M, Fracchia L, Smyth T, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  Google Scholar 

  • Blank LM, Kuepfer L (2010) Metabolic flux distributions: genetic information, computational predictions, and experimental validation. Appl Microbiol Biotechnol 86:1243–1255

    Article  CAS  Google Scholar 

  • Bredenbruch F, Nimtz M, Wray V, Morr M, Muller R, Haussler S (2005) Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinofines. J Bacteriol 187:3630–3635

    Article  CAS  Google Scholar 

  • Bujara M, Panke S (2010) Engineering in complex systems. Curr Opin Biotechnol 21:586–591

    Article  CAS  Google Scholar 

  • Burger M, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. Federation Proceedings 21:82

    Google Scholar 

  • Byrd MS, Sadovskaya I, Vinogradov E, Lu HP, Sprinkle AB, Richardson SH, Ma LY, Ralston B, Parsek MR, Anderson EM, Lam JS, Wozniak DJ (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73:622–638

    Article  CAS  Google Scholar 

  • Cabrera-Valladares N, Richardson AP, Olvera C, Trevino LG, Deziel E, Lepine F, Soberon-Chavez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194

    Article  CAS  Google Scholar 

  • Caiazza NC, Shanks RM, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361

    Article  CAS  Google Scholar 

  • Campos-García J, Caro AD, Nájera R, Miller-Maier RM, Al-Tahhan RA, Soberón-Chávez G (1998) The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent ß-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 180:4442–4451

    Google Scholar 

  • Cha M, Lee N, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199

    Article  CAS  Google Scholar 

  • Chayabutra C, Wu J, Ju L (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72:25–33

    Article  CAS  Google Scholar 

  • Chen S-Y, Wei Y-H, Chang J-S (2007a) Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 76:67–74

    Article  CAS  Google Scholar 

  • Chen SY, Lu WB, Wei YH, Chen WM, Chang JS (2007b) Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol Prog 23:661–666

    Article  CAS  Google Scholar 

  • Choi C, Munch R, Leupold S, Klein J, Siegel I, Thielen B, Benkert B, Kucklick M, Schobert M, Barthelmes J, Ebeling C, Haddad I, Scheer M, Grote A, Hiller K, Bunk B, Schreiber K, Retter I, Schomburg D, Jahn D (2007) SYSTOMONAS—an integrated database for systems biology analysis of Pseudomonas. Nucleic Acids Research 35:D533–D537

    Article  CAS  Google Scholar 

  • Choi MH, Xu J, Gutierrez M, Yoo T, Cho Y-H, Yoon SC (2011) Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative 13C NMR analysis of the products in wild-type and mutants. J Biotechnol 151:30–42

    Article  CAS  Google Scholar 

  • Costa S, Lepine F, Milot S, Deziel E, Nitschke M, Contiero J (2009) Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 36:1063–1072

    Article  CAS  Google Scholar 

  • De Lima CJB, Franca FP, Servulo EFC, Resende AA, Cardoso VL (2007) Enhancement of rhamnolipid production in residual soybean oil by an isolated strain of Pseudomonas aeruginosa. Appl Biochem Biotechnol 137:463–470

    Article  Google Scholar 

  • Delvigne F, Boxus M, Ingels S, Thonart P (2009) Bioreactor mixing efficiency modulates the activity of a prpoS::GFP reporter gene in E. coli. Microbial Cell Factories 8:15

    Google Scholar 

  • Deziel E, Lepine F, Milot S, He JX, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proceedings of the National Academy of Sciences of the United States of America 101:1339–1344

    Article  CAS  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    Article  CAS  Google Scholar 

  • Dubeau D, Deziel E, Woods DE, Lepine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263

    Article  CAS  Google Scholar 

  • Duetz WA (2007) Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends in Microbiology 15:469–475

    Article  CAS  Google Scholar 

  • Endy D, Brent R (2001) Modelling cellular behaviour. Nature 409:391–395

    Article  CAS  Google Scholar 

  • Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    CAS  Google Scholar 

  • Fernández D, Rodríguez E, Bassas M, Viñas M, Solanas AM, Llorens J, Marqués AM, Manresa A (2005) Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: effect of culture conditions. Biochem Eng J 26:159–167

    Article  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology 48:155–171

    Article  CAS  Google Scholar 

  • Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L, Schomburg D (2010) How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ Microbiol 12:1734–1747

    Article  CAS  Google Scholar 

  • Giani C, Wullbrandt D, Rothert R, Meiwes J (1997) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of l-rhamnose. German Patent US005658793A

  • Gjersing EL, Herberg JL, Horn J, Schaldach CM, Maxwell RS (2007) NMR metabolornics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa. Anal Chem 79:8037–8045

    Article  CAS  Google Scholar 

  • Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Deziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192:2973–2980

    Article  CAS  Google Scholar 

  • Goo E, Kang Y, Kim H, Hwang I (2010) Proteomic analysis of quorum sensing-dependent proteins in Burkholderia glumae. Journal of Proteome Research 9:3184–3199

    Article  CAS  Google Scholar 

  • Guerra-Santos L, Käppeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48:301–305

    CAS  Google Scholar 

  • Guerra-Santos LH, Käppeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448

    Google Scholar 

  • Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physiochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotech Bioeng 81:316–322

    Google Scholar 

  • Halai I, Taylor J (2010) ICIS pricing chemical price reports. Reed Business Information Limited. Available at http://www.icispricing.com/il_shared/il_splash/chemicals.asp. Accessed 26 March 2010

  • Han MJ, Lee SY (2006) The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 70:362–439

    Article  CAS  Google Scholar 

  • Hauser G, Karnovsky ML (1957) Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa. J Biol Chem 224:91–105

    CAS  Google Scholar 

  • Hauser G, Karnovsky ML (1958) Studies on the biosynthesis of l-rhamnose. J Biol Chem 233:287–291

    CAS  Google Scholar 

  • Herrgard MJ, Covert MW, Palsson BO (2004) Reconstruction of microbial transcriptional regulatory networks. Curr Opin Biotechnol 15:70–77

    Article  CAS  Google Scholar 

  • Hoang TT, Schweizer HP (1997) Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB). J Bacteriol 179:5326–5332

    CAS  Google Scholar 

  • Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181:5489–5497

    CAS  Google Scholar 

  • Hoffmann N, Rehm BHA (2005) Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnol Lett 27:279–282

    Article  CAS  Google Scholar 

  • Holloway BW (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13:572–581

    CAS  Google Scholar 

  • Hörmann B, Müller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM9509T. Eur J Lipid Sci Technol 112:674–680

    Article  CAS  Google Scholar 

  • Jarvis FG, Johnson MJ (1949) A glyco-lipide produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126

    Article  CAS  Google Scholar 

  • Jensen V, Lons D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Munch R, Haussler S (2006) RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 188:8601–8606

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28:27–30

    Article  CAS  Google Scholar 

  • Katagiri F (2003) Attacking complex problems with the power of systems biology. Plant Physiology 132:417–419

    Article  CAS  Google Scholar 

  • Kennedy M, Krouse D (1999) Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol 23:456–475

    Article  CAS  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  Google Scholar 

  • Kuhn D, Blank LM, Schmid A, Buhler B (2010) Systems biotechnology—rational whole-cell biocatalyst and bioprocess design. Engineering in Life Sciences 10:384–397

    Article  CAS  Google Scholar 

  • Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078

    Article  CAS  Google Scholar 

  • Lee J, Lee SY, Park S, Middelberg AP (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48

    Article  CAS  Google Scholar 

  • Lee KM, Hwang S, Ha SD, Jang J, Lim D, Kong J (2004) Rhamnolipid production in batch and fed-batch fermentation using Pseudomoas aeruginosa BYK-2 KCTC 18012P. Biotechnology and Bioprocess Engineering 9:267–273

    Article  CAS  Google Scholar 

  • Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358

    Article  CAS  Google Scholar 

  • Lepine F, Deziel E, Milot S, Villemur R (2002) Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy) alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. Journal of Mass Spectrometry 37:41–46

    Article  CAS  Google Scholar 

  • Lindhout T, Lau PCY, Brewer D, Lam JS (2009) Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology-Sgm 155:3449–3460

    Article  CAS  Google Scholar 

  • Linhardt RJ, Bakhit R, Daniels L, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368

    Article  CAS  Google Scholar 

  • Maier RM, Soberón-Chávez (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  Google Scholar 

  • Manresa M, Bastida J, Mercade M, Robert M, Deandres C, Espuny M, Guinea J (1991) Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. J Ind Microbiol 8:133–136

    Article  CAS  Google Scholar 

  • Marsudi S, Unno H, Hori K (2008) Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 78:955–961

    Article  CAS  Google Scholar 

  • Matsufuji M, Nakata K, Yoshimoto A (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol Lett 19:1213–1215

    Article  CAS  Google Scholar 

  • Medina G, Juarez K, Diaz R, Soberon-Chavez G (2003) Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology-Sgm 149:3073–3081

    Article  CAS  Google Scholar 

  • Miller DJ, Zhang YM, Rock CO, White SW (2006) Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 281:18025–18032

    Article  CAS  Google Scholar 

  • Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor cultivations. Appl Microbiol Biotechnol 87:167–174

    Article  CAS  Google Scholar 

  • Müller MM, Hörmann B, Kugel M, Syldatk C, Hausmann R (2011a) Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl Microbiol Biotechnol 89:585–592

    Article  CAS  Google Scholar 

  • Müller MM, Hörmann B, Syldatk C, Hausmann R (2011b) Microbial rhamnolipids. In: Grunwald P (ed) Carbohydrate-modifying biocatalysts. PanStanford Publishing Pte. Ltd., Singapore

    Google Scholar 

  • Mulligan CN, Gibbs BF (1989) Correlation of nitrogen-metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol 55:3016–3019

    CAS  Google Scholar 

  • Mulligan CN, Mahmourides G, Gibbs BF (1989) The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Biotechnol 12:37–43

    Article  CAS  Google Scholar 

  • Nguyen TT, Youssef NH, McInerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Research 42:1735–1743

    Article  CAS  Google Scholar 

  • Nouwens AS, Beatson SA, Whitchurch CB, Walsh BJ, Schweizer HP, Mattick JS, Cordwell SJ (2003) Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in Pseudomonas aeruginosa PAO1. Microbiology-Sgm 149:1311–1322

    Article  CAS  Google Scholar 

  • Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:6424–6428

    Article  CAS  Google Scholar 

  • Ochsner UA, Fiechter A, Reiser J (1994a) Isolation, characterization and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795

    CAS  Google Scholar 

  • Ochsner UA, Koch A, Fiechter A, Reiser J (1994b) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054

    CAS  Google Scholar 

  • Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506

    CAS  Google Scholar 

  • Ochsner UA, Hembach T, Fiechter A (1996) Production of rhamnolipid biosurfactants. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin

    Google Scholar 

  • Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002) GeneChip((R)) expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287

    Article  CAS  Google Scholar 

  • Olvera C, Goldberg JB, Sanchez R, Soberon-Chavez G (1999) The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179:85–90

    Article  CAS  Google Scholar 

  • Onvista (2011) List of resources: soft commodities. Real-time indication by Royal Bank of Scotland. Available at http://www.onvista.de/rohstoffe/rohstoffliste/soft-commodities/. Accessed 26 March 2010

  • Otero JM, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105:439–460

    Article  CAS  Google Scholar 

  • Palma M, Worgall S, Quadri L (2003) Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch Microbiol 180:374–379

    Article  CAS  Google Scholar 

  • Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    CAS  Google Scholar 

  • Pham TH, Webb JS, Rehm BHA (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology-Sgm 150:3405–3413

    Article  CAS  Google Scholar 

  • Potvin E, Sanschagrin F, Levesque R (2008) Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32:38–55

    Article  CAS  Google Scholar 

  • Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146(Pt 11):2803–2814

    CAS  Google Scholar 

  • Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberon-Chavez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718

    Article  CAS  Google Scholar 

  • Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour Technol 81:25–32

    Article  CAS  Google Scholar 

  • Ramana KV, Karanth NG (1989) Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J Chem Technol Biotechnol 45:249–257

    Article  CAS  Google Scholar 

  • Ramana KV, Charyulu N, Karanth NG (1991) A mathematical model for the production of biosurfactants of Pseudomonas aeruginosa CFTR-6: production of biomass. J Chem Technol Biotechnol 51:525–538

    Article  CAS  Google Scholar 

  • Rehm BHA, Kruger N, Steinbuchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis—the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J Biol Chem 273:24044–24051

    Article  CAS  Google Scholar 

  • Rehm BHA, Mitsky TA, Steinbuchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109

    Article  CAS  Google Scholar 

  • Reiling HE, Thanei-Wyss U, Guerra-Santos LH, Hirt R, Käppeli O, Fiechter A (1986) Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol 51:985–989

    CAS  Google Scholar 

  • Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, Haas D (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319

    Article  CAS  Google Scholar 

  • Reis RS, da Rocha SLG, Chapeaurouge DA, Domont GB, Santa Anna LMM, Freire DMG, Perales J (2010) Effects of carbon and nitrogen sources on the proteome of Pseudomonas aeruginosa PA1 during rhamnolipid production. Process Biochem 45:1504–1510

    Article  CAS  Google Scholar 

  • Robert M, Mercadé ME, Bosch MP, Parra JL, Espuny MJ, Manresa A, Guinea J (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett 11:871–874

    Article  CAS  Google Scholar 

  • Robertson BD, Frosch M, Vanputten JPM (1994) The identfication of cryptic rhamnose biosynthesis genes in Neisseria gonorrhoeae and their relationship to lipopolysaccharide biosynthesis. J Bacteriol 176:6915–6920

    CAS  Google Scholar 

  • Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S, Ren QH, Dodson R, Harkins D, Shay R, Watkins K, Mahamoud Y, Paulsen IT (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 5

  • Salwa MS, Asshifa MNN, Amirul AA, Yahya ARM (2009) Different feeding strategy for the production of biosurfactant from Pseudomonas aeruginosa USM AR2 in modified bioreactor. Biotechnology and Bioprocess Engineering 14:763–768

    Article  CAS  Google Scholar 

  • Sauer U (2006) Metabolic networks in motion: C-13-based flux analysis. Molecular Systems Biology 2:62

    Google Scholar 

  • Schaefer AL, Val DL, Hanzelka BL, Cronan JE, Greenberg EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fescheri LuxI protein. Proceedings of the National Academy of Sciences of the United States of America 93:9505–9509

    Article  CAS  Google Scholar 

  • Schuster M, Greenberg EP (2007) Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. Bmc Genomics 8:287

    Article  CAS  Google Scholar 

  • Siehnel R, Traxler B, An DD, Parsek MR, Schaefer AL, Singh PK (2010) A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 107:7916–7921

    Article  CAS  Google Scholar 

  • Sim L, Ward OP, Li Z (1997) Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol 19:232–238

    Article  CAS  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  CAS  Google Scholar 

  • Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    Article  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  Google Scholar 

  • Sullivan ER (1998) Molecular genetics of biosurfactant production. Environ Microbiol 9:263–269

    CAS  Google Scholar 

  • Syldatk C, Wagner F (1987) Production of biosurfactants. In: Biosurfactants and Biotechnology 25:89–120

  • Syldatk C, Lang S, Matulovic U, Wagner F (1985a) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch [C] 40:61–67

    CAS  Google Scholar 

  • Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985b) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch [C] 40:51–60

    CAS  Google Scholar 

  • Toribio J, Escalante AE, Soberon-Chavez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. European Journal of Lipid Science and Technology 112:1082–1087

    Article  CAS  Google Scholar 

  • Tremblay J, Deziel E (2010) Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics 11:15

    Article  CAS  Google Scholar 

  • Tremblay J, Richardson AP, Lepine F, Deziel E (2007) Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ Microbiol 9:2622–2630

    Article  CAS  Google Scholar 

  • Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and l-(+)-rhamnose from rapeseed oil with Pseudomonas sp DSM 2874. European Journal of Lipid Science and Technology 105:563–571

    Article  CAS  Google Scholar 

  • Van Delden C, Pesci EC, Pearson JP, Iglewski BH (1998) Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun 66:4499–4502

    Google Scholar 

  • van Gulik WM (2010) Fast sampling for quantitative microbial metabolomics. Curr Opin Biotechnol 21:27–34

    Article  CAS  Google Scholar 

  • Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5095–5108

    Article  CAS  Google Scholar 

  • Vemuri GN, Aristidou AA (2005) Metabolic engineering in the -omics era: elucidating and modulating regulatory networks. Microbiology and Molecular Biology Reviews 69:197

    Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095

    Article  CAS  Google Scholar 

  • Wagner VE, Gillis RJ, Iglewski BH (2004) Transcriptome analysis of quorum sensing regulation and virulence factor expression in Pseudomonas aeruginosa. Vaccine 22(Suppl 1):S15–S20

    Article  CAS  Google Scholar 

  • Wang QH, Fang XD, Bai BJ, Liang XL, Shuler PJ, Goddard WA, Tang YC (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853

    Article  CAS  Google Scholar 

  • Wang Y, Chu J, Zhuang YP, Wang YH, Xia JY, Zhang SL (2009) Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv 27:989–995

    Article  CAS  Google Scholar 

  • Wei Y-H, Chou C-L, Chang J-S (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27:146

    Article  CAS  Google Scholar 

  • Weuster-Botz D (2005) Parallel reactor systems for bioprocess development. Technology Transfer in Biotechnology: From Lab to Industry to Production 92:125–143

    CAS  Google Scholar 

  • Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  CAS  Google Scholar 

  • Winsor GL, Van Rossum T, Lo R, Khaira B, Whiteside MD, Hancock REW, Brinkman FSL (2009) Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Research 37:D483–D488

    Article  CAS  Google Scholar 

  • Wlaschin KF, Hu WS (2006) Fedbatch culture and dynamic nutrient feeding. Adv Biochem Eng Biotechnol 101:43–74

    CAS  Google Scholar 

  • Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends in Biotechnology 26:321–327

    Article  CAS  Google Scholar 

  • Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008) Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol 99:1157–1164

    Article  CAS  Google Scholar 

  • Zhang G-l Wu, Y-t Qian X-p, Meng Q (2005) Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J Zhejiang Univ SCI 6B:725–730

    Article  CAS  Google Scholar 

  • Zhang YM, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    CAS  Google Scholar 

  • Zhang SL, Ye BC, Chu J, Zhuang YP, Guo MJ (2006) From multi-scale methodology to systems biology: to integrate strain improvement and fermentation optimization. J Chem Technol Biotechnol 81:734–745

    Article  CAS  Google Scholar 

  • Zhang WW, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology-Sgm 156:287–301

    Article  CAS  Google Scholar 

  • Zhu K, Rock CO (2008) RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154

    Article  CAS  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Vantriet K (1990) Modeling of bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Michael Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M.M., Hausmann, R. Regulatory and metabolic network of rhamnolipid biosynthesis: Traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91, 251–264 (2011). https://doi.org/10.1007/s00253-011-3368-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3368-2

Keywords

Navigation