Skip to main content
Log in

Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa produces the biosurfactants rhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs). In this study, we report the production of one family of rhamnolipids, specifically the monorhamnolipids, and of HAAs in a recombinant Escherichia coli strain expressing P. aeruginosa rhlAB operon. We found that the availability in E. coli of dTDP-l-rhamnose, a substrate of RhlB, restricts the production of monorhamnolipids in E. coli. We present evidence showing that HAAs and the fatty acid dimer moiety of rhamnolipids are the product of RhlA enzymatic activity. Furthermore, we found that in the recombinant E. coli, these compounds have the same chain length of the fatty acid dimer moiety as those produced by P. aeruginosa. These data suggest that it is RhlAB specificity, and not the hydroxyfatty acid relative abundance in the bacterium, that determines the profile of the fatty acid moiety of rhamnolipids and HAAs. The rhamnolipids level produced in recombinant E. coli expressing rhlAB is lower than the P. aeruginosa level and much higher than those reported by others in E. coli, showing that this metabolic engineering strategy lead to an increased rhamnolipids production in this heterologous host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amman E, Ochs B, Abel KJ (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301–315

    Article  Google Scholar 

  • Boyer HB, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 4:459–472

    Article  Google Scholar 

  • Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of rhamnose-containing glycolipids by extracts of Pseudomonas aeruginosa. J Biol Chem 238:2595-2602

    CAS  PubMed  Google Scholar 

  • Chandrasekaran EV, Bemiller JN (1980) Constituent analyses of glycosaminoglycans. Methods Carbohydr Chem 8:89–96

    CAS  Google Scholar 

  • Costerton JW (1980) Pseudomonas aeruginosa in nature and disease. In: Sabath CD (ed), Pseudomonas aeruginosa: the organism, diseases it causes and their treatment. Hans Huber Publishers, Bern, Switzerland, pp 15–24

    Google Scholar 

  • Darzins A, Chakrabarty AM (1984) Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol 159:9–18

    Article  CAS  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from growing cultures of Pseudomonas aeruginosa 57RP. Biochim Biophys Acta 1485:145–152

    Article  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa 3-(3-hydroxyalkanoyloxy)alkanoic acids) (HAAs), the precursors of rhamnolipids. Microbiology (UK) 149:2005–2013

    Article  Google Scholar 

  • Graninger M, Nidetzky B, Heinrichs DE, Whitfield C, Messner P (1999) Characterization of dTDP-4-dehydrorhamnose 3,5-epimerase and dTDP-4-dehydrorhamnose reductase, required for dTDP-l-rhamnose biosynthesis in Salmonella enterica serovar typhimurium LT2. J Biol Chem 274:25069–25077

    Article  CAS  Google Scholar 

  • Hancock REW, Carey AM (1979) Outer membrane of Pseudomonas aeruginosa: heat-and 2-mercaptoethanol-modifiable proteins. J Bacteriol 140:902–910

    Article  CAS  Google Scholar 

  • Jensen KF (1993) The Escherichia coli K12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407

    Article  CAS  Google Scholar 

  • Klena JD, Schnaitman CA (1993) Function of the rfb gene cluster and the rfe gene in the synthesis of O antigen by Shigella dysenteriae 1. Mol Microbiol 9:393–402

    Article  CAS  Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  CAS  Google Scholar 

  • Le Borgne S, Palmeros B, Valle F, Bolivar F, Gosset G (1998) pBRINT-Ts: a plasmid family with a temperature-sensitive replicon, designed for chromosomal integration into the lacZ gene of Escherichia coli. Gene 223:213–219

    Article  Google Scholar 

  • Lépine F, Déziel E, Milot S, Villemur R (2002) Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy)alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J Mass Spectr 37:41–46

    Article  Google Scholar 

  • Maier MR, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  Google Scholar 

  • Marumo K, Lindqvist L, Verma M, Wientraub A, Reeves PR, Lindberg AA (1992) Enzymatic synthesis and isolation of thymidine diphosphate-6-deoxy-d-xylo-4-hexulose and thymidine diphosphate-l-rhamnose. Eur J Biochem 204:539–545

    Article  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 431–435

    Google Scholar 

  • Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795

    CAS  PubMed  Google Scholar 

  • Ochsner UA, Reiser J, Fietcher A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous host. Appl Environ Microbiol 61:3503–3506

    Article  CAS  Google Scholar 

  • Preston MJ, Seed PC, Toder DS, Iglewski BH, Ohman DE, Gustin JK, Goldberg JB, Pier GB (1997) Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect Immun 65:3086–3090

    Article  CAS  Google Scholar 

  • Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146:2803–2814

    Article  CAS  Google Scholar 

  • Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for dirhamnolipid biosynthesis. Mol Microbiol 40:708–718

    Article  CAS  Google Scholar 

  • Rehm BHA, Kruger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and other proteins required for PHA synthesis. J Biol Chem 273:24044–24051

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    Article  CAS  Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

    Article  CAS  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005a) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  Google Scholar 

  • Soberón-Chávez G, Aguirre-Ramírez M, Ordóñez LG (2005b) Is Pseudomonas aeruginosa only sensing quorum? Critical Rev Microbiol 31:171–182

    Article  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoates acids from gluconate by Pseudomonas aeruginosa and other fluorescent Pseudomonads. Appl Environ Microbiol 56:3360–3367

    Article  CAS  Google Scholar 

  • van Delden C, Iglewski BH (1998) Cell-to cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560

    Article  Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095

    Article  CAS  Google Scholar 

  • White D (2000) The synthesis of fatty acids. In: The physiology and biochemistry of prokaryotes, 2nd edn. Oxford University Press, New York, 2000 pp 214–217

    Google Scholar 

  • Yanisch-Perron C, Viera J, Messing J (1985) Improved M13 cloning vectors and host strains: nucleotide sequence of M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  Google Scholar 

  • Zhang Y, Miller RM (1992) Enhancement of octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Rosalba Sánchez and Marisela Aguirre-Ramírez for technical assistance. This research was founded in part by Universidad Nacional Autónoma de México through grants DGAPA PAPIIT IIX201404 and IN203305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Soberón-Chávez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrera-Valladares, N., Richardson, AP., Olvera, C. et al. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73, 187–194 (2006). https://doi.org/10.1007/s00253-006-0468-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0468-5

Keywords

Navigation