Skip to main content

Advertisement

Log in

Engineering cellulolytic ability into bioprocessing organisms

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is an abundant renewable feedstock for sustainable production of commodities such as biofuels. The main technological barrier that prevents widespread utilization of this resource for production of commodity products is the lack of low-cost technologies to overcome the recalcitrance of lignocellulose. Organisms that hydrolyse the cellulose and hemicelluloses in biomass and produce a valuable product such as ethanol at a high rate and titre would significantly reduce the costs of current biomass conversion technologies. This would allow steps that are currently accomplished in different reactors, often by different organisms, to be combined in a consolidated bioprocess (CBP). The development of such organisms has focused on engineering naturally cellulolytic microorganisms to improve product-related properties or engineering non-cellulolytic organisms with high product yields to become cellulolytic. The latter is the focus of this review. While there is still no ideal organism to use in one-step biomass conversion, several candidates have been identified. These candidates are in various stages of development for establishment of a cellulolytic system or improvement of product-forming attributes. This review assesses the current state of the art for enabling non-cellulolytic organisms to grow on cellulosic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adham S, Honrubia P, Díaz M, Fernández-Abalos J, Santamaría R, Gil J (2001) Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch Mirobiol 177:91–97

    CAS  Google Scholar 

  • Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30:1515–1524

    CAS  Google Scholar 

  • Alfenore S, Molina-Jouve C, Guillouet SE, Uribelarrea J-L, Goma G, Benbadis L (2002) Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol 60:67–72

    CAS  Google Scholar 

  • Allcock ER, Woods DR (1981) Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium. Appl Environ Microbiol 41:539–541

    CAS  Google Scholar 

  • Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948

    CAS  Google Scholar 

  • Bates EE, Gilbert HJ, Hazlewood GP, Huckle J, Laurie JI, Mann SP (1989) Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Appl Environ Microbiol 55:2095–2097

    CAS  Google Scholar 

  • Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8:364–377

    CAS  Google Scholar 

  • Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875

    CAS  Google Scholar 

  • Bräu B, Sahm H (1986) Cloning and expression of the structural gene for pyruvate decarboxylase of Zymomonas mobilis in Escherichia coli. Arch Microbiol 144:296–301

    Google Scholar 

  • Brestic-Goachet N, Gunasekaran P, Cami B, Baratti JC (1989) Transfer and expression of an Erwinia chrysanthemi cellulase gene in Zymomonas mobilis. J Gen Microbiol 135:893–902

    CAS  Google Scholar 

  • Burchhardt G, Ingram LO (1992) Conversion of xylan to ethanol by ethanologenic strains of Escherichia coli and Klebsiella oxytoca. Appl Environ Microbiol 58:1128–1133

    CAS  Google Scholar 

  • Causey TB, Zhou S, Shanmugam KT, Ingram LO (2002) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. P Natl Acad Sci USA 100:825–832

    Google Scholar 

  • Chang DE, Jung HC, Rhee JS, Pan JG (1999) Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389

    CAS  Google Scholar 

  • Chen J, Zhang W, Tan L, Wang Y, He G (2009) Optimization of metablolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering. Biotechnol Adv 27:593–598

    CAS  Google Scholar 

  • Cho JS, Choi YJ, Chung DK (2000) Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic lactobacilli. Curr Microbiol 40:257–263

    CAS  Google Scholar 

  • Cho KM, Yoo YJ, Kang HS (1999) δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol 25:23–30

    CAS  Google Scholar 

  • Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic enigeering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408

    CAS  Google Scholar 

  • Da Silva GP, De Araujo EF, Silva D, Guimaraes WV (2005) Ethanolic fermentation of sucrose, sugarcane juice and molasses by Escherichia coli strain KO11 and Klebsiella oxytoca strain P2. Braz J Mircobiol 36:395–404

    Google Scholar 

  • Den Haan R, Van Zyl WH (2003) Enhanced xylan degradation and utilisation by Pichia stipitis overproducing fungal xylanolytic enzymes. Enzyme Microb Technol 33:620–628

    Google Scholar 

  • Den Haan R, McBride JE, La Grange DC, Lynd LR, Van Zyl WH (2007a) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Tech 40:1291–1299

    Google Scholar 

  • Den Haan R, Rose SH, Lynd LR, Van Zyl WH (2007b) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94

    Google Scholar 

  • Devaux M (2004) The cellulosome of Clostridium cellulolyticum. Enzyme Microb Tech 37:373–385

    Google Scholar 

  • Doi R (2008) Cellulases of mesophilic microorganisms—Cellulosome and noncellulosome producers. Ann NY Acad Sci 1125:267–279

    CAS  Google Scholar 

  • Doi R, Park JS, Liu CC, Malburg LM, Tamaru Y, Ichiishi A, Ibrahim A (1998) Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans. Extremophiles 2:53–60

    CAS  Google Scholar 

  • Doi RH, Kosugi A, Murashima K, Tamaru Y, Han SO (2003) Cellulosomes from mesophilic bacteria. J Bacteriol 185:5907–5914

    CAS  Google Scholar 

  • Eklund R, Zacchi G (1995) Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme Microb Tech 17:255–259

    CAS  Google Scholar 

  • Energy Information Administration (2005) Crude oil production. http://eia.doe.gov/. Accessed 16 November 2006

  • Fierobe HP, Pages S, Belaich A, Champ S, Lexa D, Belaich JP (1999) Cellulosome from Clostridium cellulolyticum: molecular study of the dockerin/cohesin interaction. Biochemistry 38:12822–12832

    CAS  Google Scholar 

  • Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon M, Pages S, Lamed R, Tardif C, Belaich JP, Bayer EA (2005) Action of designer cellulosomes on homologeous versus complex substrates. J Biol Chem 280:16325–16334

    CAS  Google Scholar 

  • Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP (2008) Degradation of cellulose substrates by cellulosome chimeras. J Biol Chem 277:49621–49630

    Google Scholar 

  • Fonseca GG, Bombert AK, Heinzle E, Wittmann C (2007) Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res 7:422–435

    CAS  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    CAS  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    CAS  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2003) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzymes. Appl Environ Microbiol 70:1207–1212

    Google Scholar 

  • Golias H, Dumsday GJ, Stanley GA, Pamment NB (2002) Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and perfomance in co-culture with thermotolerant strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J Biotechnol 96:155–168

    CAS  Google Scholar 

  • Gutierrrez-Padilla MGD, Karim MN (2005) Influence of furfural on the recombinant Zymomonas mobilis strain CP4(pZB5) for ethanol production. J Am Sci 1:24–27

    Google Scholar 

  • Hahn-Hägerdal B, Wahlbom CF, Gardonyi M, Van Zyl WH, Cordero OR, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund M-F, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 12:549–556

    Google Scholar 

  • Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Google Scholar 

  • Heng NC, Jenkinson HF, Tannock GW (1997) Cloning and expression of an endo-1, 3-1, 4-β-glucanase gene from Bacillus macerans in Lactobacillus reuteri. Appl Environ Microbiol 63:3336–3340

    CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. P Natl Acad Sci USA 103:11206–11210

    CAS  Google Scholar 

  • Hong J, Tamaki H, Yamamoto K, Kumagai H (2003a) Cloning of a gene encoding a thermo-stable endo-beta-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnol Lett 25:657–661

    CAS  Google Scholar 

  • Hong J, Tamaki H, Yamamoto K, Kumagai H (2003b) Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl Microbiol Biotechnol 63:42–50

    CAS  Google Scholar 

  • Hong J, Tamaki H, Kumagai H (2007a) Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339

    CAS  Google Scholar 

  • Hong J, Wang Y, Kumagai H, Tamaki H (2007b) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123

    CAS  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    CAS  Google Scholar 

  • Ingram LO, Conway T, Alterthum F (1991) Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes. Patent 5000000

  • Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1997) Metabolic engineering of bacteria for ethanol production. Biotech Bioeng 58:204–214

    Google Scholar 

  • Jeffries TW (1996) Biochemistry and genetics of microbial xylanases. Curr Opin Biotech 7:337–342

    CAS  Google Scholar 

  • Jeffries TW, Davis BP, Dahn K, Cho JY (1996) Genetic engineering of xylose fermentation in yeasts. USDA. http://www2.biotech.wisc.edu/jeffries/bioprocessing/xoferm/xoferm.html. Accessed 26 February 2010

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    CAS  Google Scholar 

  • Jeon E, Hyeon J, Suh DJ, Suh YW, Kim SW, Song KH, Han SO (2009) Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes. Mol Cells 28:369–373

    CAS  Google Scholar 

  • Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2009) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758

    Google Scholar 

  • Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  Google Scholar 

  • Kademi A, Baratti JC (1996) Batch fermentation kinetics of ethanol production by Zymomonas mobilis on cellulose hydrolysate. Biotechnol Lett 18:643–648

    CAS  Google Scholar 

  • Karhumaa K, Wiedemann B, Hahn-Hagerdal B, Boles E, Gorwa-Grauslund M-F (2006) Co-utilization of l-arabinose and d-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5:1–11

    Google Scholar 

  • Kim Y, Ingram LO, Shanmugam KT (2007) Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl Environ Microbiol 73:1766–1771

    CAS  Google Scholar 

  • Kuyper M, Winkler AA, Van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664

    CAS  Google Scholar 

  • Lamed R, Setter E, Bayer EA (1983a) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836

    CAS  Google Scholar 

  • Lamed R, Setter E, Kenig R, Bayer EA (1983b) The cellulosome—a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 13:163–181

    CAS  Google Scholar 

  • Lee SF, Forsberg CW, Gibbins LN (1985) Cellulolytic activity of Clostridium acetobutylicum. Appl Environ Microbiol 50:220–228

    CAS  Google Scholar 

  • Lee YE, Lowe SE, Henrissat B, Zeikus JG (1993a) Characterization of the active site and thermostability regions of endoxylanse from Thermoanaerobacterium saccharolyticum B6A-RI. J Bacteriol 175:5890–5898

    CAS  Google Scholar 

  • Lee YE, Lowe SE, Zeikus GJ (1993b) Regulation and characterization of xylanolytic enzymes of Thermoanaerobacterium saccharolyticum B6A-RI. Appl Environ Microbiol 59:763–771

    CAS  Google Scholar 

  • Lejeune A, Eveleigh DE, Colson C (1988) Expression of an endoglucanase gene of Pseudomonas fluorescens var. cellulosa in Zymomonas mobilis. FEMS Microbiol Lett 49:363–366

    CAS  Google Scholar 

  • Lin H, Bennett GN, San KY (2005) Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol Bioeng 90:775–779

    CAS  Google Scholar 

  • Liu JR, Yu B, Liu FH, Cheng KJ, Zhao X (2005) Expression of rumen microbial fibrolytic enzyme genes in probiotic Lactobacillus reuteri. Appl Environ Microbiol 71:6769–6775

    CAS  Google Scholar 

  • Liu JR, Yu B, Zhao X, Cheng KJ (2007) Coexpression of rumen microbial β-glucanase and xylanase genes in Lactobacillus reuteri. Appl Microbiol Biotechnol 77:117–124

    CAS  Google Scholar 

  • Lopez-Contreras AM, Martens AA, Szijarto N, Mooibroek H, Claassen PA, Van Der OJ, De Vos WM (2003) Production by Clostridium acetobutylicum ATCC 824 of CelG, a cellulosomal glycoside hydrolase belonging to family 9. Appl Environ Microbiol 69:869–877

    CAS  Google Scholar 

  • Lopez-Contreras AM, Gabor K, Martens AA, Renckens BA, Claassen PA, Van Der OJ, De Vos WM (2004) Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum. Appl Environ Microbiol 70:5238–5243

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundametals and biotechnology. Microbiol Mol Biol R 66:506–577

    CAS  Google Scholar 

  • Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotech 16:577–583

    CAS  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    CAS  Google Scholar 

  • Maly RR, Degen W (2001) Trends in future fuels for mobile applications. The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines 5:13–21

    Google Scholar 

  • Margaritis A, Bajpai P (1982) Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains. Appl Environ Microbiol 44:1039–1041

    CAS  Google Scholar 

  • Mingardon F, Perret S, Belaich A, Tardif C, Belaich JP, Fierobe HP (2005) Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC824. Appl Environ Microbiol 71:1215–1222

    CAS  Google Scholar 

  • Mohagheghi A, Evans K, Chou YC, Zhang M (2002) Cofermentation of glucose, xylose and arabinose by genomic DNA-integrated xylose/arabinose fermenting stains of Zymomonas mobilis AX101. Appl Biochem Biotech 98:885–898

    Google Scholar 

  • Moniruzzaman M, Lai X, York SW, Ingram LO (1997) Isolation and molecular characterization of high-performance cellobiose-fermenting spontaneous mutants of ethanologenic Escherichia coli KO11 containing the Klebsiella oxytoca casAB Operon. Appl Environ Microbiol 63:4633–4637

    CAS  Google Scholar 

  • Moon NJ (1984) A short review of the role of lactobacilli in silage fermentation. Food Microbiol 1:333–338

    Google Scholar 

  • Müller S, Sandal T, Kamp-Hansen P, Dalbøge H (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14:1267–1283

    Google Scholar 

  • Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 97:107–116

    CAS  Google Scholar 

  • Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2:69–77

    CAS  Google Scholar 

  • Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991a) Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase. Appl Environ Microbiol 57:893–900

    CAS  Google Scholar 

  • Ohta K, Mejia JP, Shanmugam KT, Ingram LO (1991b) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815

    CAS  Google Scholar 

  • Ozkose E, Akyol I, Kar B, Comlekcioglu U, Ekinci MS (2009) Expression of fungal cellulase gene in Lactococcus lactis to construct novel recombinant silage inoculants. Folia Microbiol 54:335–342

    CAS  Google Scholar 

  • Papendieck A, Dahlems U, Gellissen G (2002) Technical enzyme production and whole-cell biocatalysis: application of Hansenula polymorpha. In: Gellissen G (ed) Hansenula polymorpha: biology and applications. Wiley-VCH, Weinham, pp 255–271

    Google Scholar 

  • Paradis FW, Warren RAJ, Kilburn DG, Miller J (1987) The expression of Cellulomonas fimi cellulase genes in Brevibacterium lactofermentum. Gene 61:199–206

    CAS  Google Scholar 

  • Parekh S, Wayman M (1986) Fermentation of cellobiose and wood sugars to ethanol by Candida shehatae and Pichia stipitis. Biotechnol Lett 8:597–600

    CAS  Google Scholar 

  • Parekh SR, Parekh RS, Wayman M (1987) Fermentation of wood-derived acid hydrolysate in a batch bioreactor by Pichia stipitis. R Proc Biochem 22:85–91

    CAS  Google Scholar 

  • Park SC, Kademi A, Baratti JC (1993) Alcoholic fermentation of cellulose hydrolysate by Zymomonas mobilis. Biotechnol Lett 15:1179–1184

    CAS  Google Scholar 

  • Pecota DC, Rajgarhia V, Da Silva NA (2007) Sequential gene integration for the engineering of Kluyveromyces marxianus. J Biotechnol 127:408–416

    CAS  Google Scholar 

  • Perret S, Casalot L, Fierobe HP, Tardif C, Sabathe F, Belaich JP, Belaich A (2004) Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J Bacteriol 186:253–257

    CAS  Google Scholar 

  • Piotek M, Hagedorn J, Hollenberg CP, Gellissen G, Srasser AWM (1998) Two novel gene expression systems based on the yeasts Schwanniomyces occidentalis and Pichia stipitis. Appl Microbiol Biotechnol 50:331–338

    Google Scholar 

  • Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C (2006) How did Saccharomyces evolve to become a good brewer? Trends Genet 22:183–186

    CAS  Google Scholar 

  • Rajoka MI, Khan S, Shahid R (2003) Kinetics and regulation studies of the production of β-galactosidase from Kluyveromyces marxianus grown on different substrates. Food Technol Biotech 41:315–320

    CAS  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    CAS  Google Scholar 

  • Rossi F, Rudella A, Marzotto M, Dellaglio F (2001) Vector-free cloning of a bacterial endo-1,4-β-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie Leeuwenhoek 80:139–147

    CAS  Google Scholar 

  • Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4:157–164

    CAS  Google Scholar 

  • Sabathe F, Soucaille P (2003) Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. J Bacteriol 185:1092–1096

    CAS  Google Scholar 

  • Sabathe F, Belaich A, Soucaille P (2002) Charaterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol Lett 217:15–22

    CAS  Google Scholar 

  • Sanchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229–239

    CAS  Google Scholar 

  • Scheirlinck T, Mahillon J, Joos H, Dhaese P, Michiels F (1989) Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol 55:2130–2137

    CAS  Google Scholar 

  • Seon Park J, Russell JB, Wilson DB (2007) Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85. Anaerobe 13:83–88

    Google Scholar 

  • Shanmugam KT, Ingram LO (2008) Engineering biocatalysts for production of commodity chemicals. J Mol Microb Biotech 15:8–15

    CAS  Google Scholar 

  • Sharp R, O'donnell AG, Gilbert HG, Hazlewood GP (1992) Growth and survival of genetically manipulated Lactobacillus plantarum in silage. Appl Environ Microbiol 58:2517–2522

    CAS  Google Scholar 

  • Shaw AJ, Jenney FE, Adams MWW, Lynd LR (2008a) End-product pathways in the xylose fermenting bacterium, Thermoanaerobacterium saccharolyticum. Enzyme Microb Tech 42:453–458

    CAS  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008b) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. P Natl Acad Sci USA 105:13769–13774

    CAS  Google Scholar 

  • Sieo CC, Abdullah N, Tan WS, Ho YW (2005) Influence of β-glucanase-producing Lactobacillus strains on intestinal characteristics and feed passage rate of broiler chickens. Poult Sci 84:734–741

    CAS  Google Scholar 

  • Slininger PJ, Dien BS, Gorsich SW, Liu ZL (2006) Nitrogen source and mineral optimization enhance d-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbiol Biotechnol 72:1285–1296

    CAS  Google Scholar 

  • Spindler DD, Wyman CE, Grohmann K, Mohagheghi A (1989) Simultaneous saccharification and fermentation of pretreated wheat straw to ethanol with selected yeast strains and β-glucosidase supplementation. Appl Biochem Biotechnol 20–21:529–540

    Google Scholar 

  • Srivastava R, Kumar GP, Srivastava KK (1995) Construction of a recombinant cellulolytic Escherichia coli. Gene 164:185–186

    CAS  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresour Technol 83:1–11

    CAS  Google Scholar 

  • Tsai SL, Oh J, Singh S, Chen R, Chen W (2009) Functional assembly of mini-cellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75:6087–6093

    CAS  Google Scholar 

  • Van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin ML, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J, Pronk JT (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26:706–714

    Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14:67–76

    Google Scholar 

  • Van Rooyen R, Hahn-Hagerdal B, La Grange DC, Van Zyl WH (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120:284–295

    Google Scholar 

  • Van Zyl WH, Lynd LR, Den Haan R, McBride JE (2007) Consolidated Bioprocessing for Bioethanol Production Using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    Google Scholar 

  • Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11:234–242

    CAS  Google Scholar 

  • Wen F, Sun J, Zhoa H (2010) Yeast surface display of trifuctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260

    CAS  Google Scholar 

  • Weinberg ZG, Muck RE (1996) New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol Rev 19:53–68

    CAS  Google Scholar 

  • Wood BE, Ingram LO (1992) Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl Environ Microbiol 58:2103–2110

    CAS  Google Scholar 

  • Wood BE, Beall DS, Ingram LO (1997) Production of recombinant bacterial endoglucanase as a co-product with ethanol during fermentation using derivitives of Escherichia coli KO11. Biotech Bioeng 55:547–555

    CAS  Google Scholar 

  • Yamada T, Fatigati MA, Zhang M (2002) Performance of immobilized Zymomonas mobilis 31821 (pZB5) on actual hydrolysates produced by Arkenol Technology. Appl Biochem Biotech 98:899–907

    Google Scholar 

  • Yamano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biot 20:132–138

    Google Scholar 

  • Yanase H, Nozaki K, Okamoto K (2005) Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnol Lett 27:259–263

    CAS  Google Scholar 

  • Yanase H, Sato D, Yamamoto K, Matsuda S, Yamamoto S, Okamoto K (2007) Genetic engineering of Zymobacter palmae for prodution of ethanol from xylose. Appl Environ Microbiol 73:2592–2599

    CAS  Google Scholar 

  • Yang JK, Yoon HJ, Ahn HJ, Lee B, Pedelacq JD, Liong EC, Berendzen J, Laivenieks M, Vieille C, Zeikus GJ, Vocadlo DJ, Withers SG, Suh SW (2004) Crystal structure of β-d-Xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase. J Mol Biol 335:155–165

    CAS  Google Scholar 

  • Yoo JS, Jung YJ, Chung SY, Lee YC, Choi YL (2004) Molecular cloning and characterization of CMCase gene (celC) from Salmonella typhimurium UR. J Microbiol 42:205–210

    CAS  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    CAS  Google Scholar 

  • Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    CAS  Google Scholar 

  • Zhang M, Chou YC, Picataggio SK, Finkelstein M (1997) Single Zymomonas mobilis strain for xylose and arabinose fermentation. Patent 5843760

  • Zhou S, Ingram LO (1999) Engineering endoglucanase-secreting strains of ethanologenic Klebsiella oxytoca P2. J Ind Microbiol Biot 22:600–607

    CAS  Google Scholar 

  • Zhou S, Ingram LO (2000) Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucananses (CelZ and CelY) from Erwinia chrysanthemi. J Bacteriol 182:5676–5682

    CAS  Google Scholar 

  • Zhou S, Ingram LO (2001) Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase. Biotechnol Lett 23:1455–1462

    CAS  Google Scholar 

  • Zhou S, Yomano LP, Saleh AZ, Davis FC, Aldrich HC, Ingram LO (1999) Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (Encoded by celZ) in Escherichia coli B. Appl Environ Microbiol 65:2439–2445

    CAS  Google Scholar 

  • Zhou S, Davis FC, Ingram LO (2001) Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2. Appl Environ Microbiol 67:6–14

    CAS  Google Scholar 

  • Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:339–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem H. van Zyl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

la Grange, D.C., den Haan, R. & van Zyl, W.H. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87, 1195–1208 (2010). https://doi.org/10.1007/s00253-010-2660-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2660-x

Keywords

Navigation