Skip to main content
Log in

Improved bioethanol production through simultaneous saccharification and fermentation of lignocellulosic agricultural wastes by Kluyveromyces marxianus 6556

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The combined effect of simultaneous saccharification and fermentation and separate hydrolysis and fermentation (SHF) for ethanol production by Kluyveromyces marxianus 6556 was studied using two lignocellulosic feedstocks viz., corncob and soybean cake. The ethanologenic efficiency of K. marxianus 6556 was observed as 28% (theoretical yield) in a fermentation medium containing glucose, but, there was no ethanol production by cells grown on xylose. A maximum sugar release of 888 mg/g corncob and 552 mg/g soybean cake was achieved through acid hydrolysis pretreatment. Furthermore, corncob and soybean cake treated with commercial cellulase (100 IU for 48 h) from Trichoderma reesei yielded reducing sugars of 205 and 100 mg/g, respectively. Simultaneous saccharification and fermentation resulted in highest ethanol production of 5.68 g/l on corncob and 2.14 g/l on soybean cake after 48 h of incubation. On the contrary, the presence of inhibitors decreased the overall ethanol yield in the hydrolysates obtained through SHF of corncob and soybean cake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SHF:

Separate hydrolysis and fermentation

CBS:

Centraalbureau voor Schimmelcultures

NREL:

National Renewable Energy Laboratory

AOAC:

Association of Official Analytical Chemistry

References

  • Adrados BP, Choteborska P, Galbe M, Zacchi G (2005) Ethanol production from non-starch carbohydrates of wheat bran. Bioresour Technol 96:843–850

    Article  Google Scholar 

  • Balat M, Balat H, Cahide ÖZ (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  CAS  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballestros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Proc Biochem 39:1843–1848

    Article  CAS  Google Scholar 

  • Cardona CA, Sanchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    Article  CAS  Google Scholar 

  • Chandel AK, Chan ES, Ravinder R, Lakshmi M, Venkateswar NR, Pogaku R (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  • Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18:295–331

    Article  CAS  Google Scholar 

  • Chen M, Xia L, Xue P (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeterior Biodegrad 59:85–89

    Article  CAS  Google Scholar 

  • Cooper C (1999) A renewed boost for ethanol. Chem Eng 106:35

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  CAS  Google Scholar 

  • Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crop Prod 20:103–110

    Article  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengeborg C, Stenberg K, Zacchi G (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of soft-wood. Enzym Microb Technol 24:151–159

    Article  CAS  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. Biotechnology 56:1–24

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:629–642

    Article  Google Scholar 

  • Oliva JM, Ballesteros I, Negro MJ, Manzanares P, Cabanńas A, Ballesteros M (2004) Effect of binary combinations of selected toxic compounds on growth and fermentation of Kluyveromyces marxianus. Biotechnol Prog 20:715–720

    Article  CAS  Google Scholar 

  • Penner MH, Liaw ET (1994) Kinetic consequences of high ratios of substrate to enzyme saccharification systems based on Trichoderma cellulase. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 363–371

    Chapter  Google Scholar 

  • Rouhollah H, Iraj N, Gitil E, Sorah A (2007) Mixed sugar fermentation by Pichia stipitis, Sacharomyces cerevisiae, and an isolated xylose fermenting Kluyveromyces marxianus and their cocultures. Afr J Biotechnol 6:1110–1114

    CAS  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Proc Biochem 40:3693–3700

    Article  CAS  Google Scholar 

  • Sheehan J, Himmel ME (1999) Enzymes, energy, and the environment: a strategic perspective on the US Department of Energy’s research and development activities for bioethanol. Biotechnol Prog 15:817–827

    Article  CAS  Google Scholar 

  • Stanbuk BU, Franden MA, Singh A, Zhang M (2003) d-Xylose transport by Candida Succiphila and Kluyveroyces marxianus. Appl Biochem Biotechnol 106:255–263

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • Tomás-Pejó E, García-Aparicio M, Negro MJ, Oliva JM, Ballesteros M (2009) Effect of different cellulase dosages on cell viability and ethanol production by Kluyveromyces marxianus in SSF processes. Bioresour Technol 100:890–895

    Article  Google Scholar 

  • Varga E, Thomsen MH, Thomsen AB (2004) Bioethanol production from wet oxidized corn stover using pretreatment manure as a nutrient source. BioSystems 4:1–4

    Google Scholar 

  • Wen ZY, Liao W, Chen SL (2004) Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour Technol 91:31–39

    Article  CAS  Google Scholar 

  • Wilkins M, Mueller M, Eichling S, Banat I (2008) Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Proc Biochem 43(4):346–350

    Article  CAS  Google Scholar 

  • Yablochkova EN, Bolotnikova OI, Mikhailova NP, Nemova N, Ginak AI (2004) The activity of key enzymes in xylose-assimilating yeasts at different rate of oxygen transfer to the fermentation medium. Appl Biochem Microbiol 72:163–168

    Google Scholar 

  • Zafar S, Owais M (2006) Ethanol production from crude whey by Kluyveromyces marxianus. Biochem Eng J 27:295–298

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the National Research Foundation (NRF), South Africa and the Durban University of Technology for the financial support. Dr. Pratyoosh Shukla gratefully acknowledges Birla Institute of Technology (Deemed University), Ranchi, India for providing study leave to visit Durban University of Technology, Durban, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Shukla, P., Ayyachamy, M. et al. Improved bioethanol production through simultaneous saccharification and fermentation of lignocellulosic agricultural wastes by Kluyveromyces marxianus 6556. World J Microbiol Biotechnol 26, 1041–1046 (2010). https://doi.org/10.1007/s11274-009-0267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0267-0

Keywords

Navigation