Skip to main content
Log in

A comprehensive survey on topology optimization of phononic crystals

  • REVIEW PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The objective of this paper is to present a peer-review of the literature and trends surrounding the design of phononic crystals (PnCs) using topology optimization methods. After first providing a brief review of new developments, improvements, and applications of PnCs, this paper investigates the techniques and applications of topology optimization methods for phononic band gaps and functional structures. Both gradient-based and non-gradient-based topology optimization methods have been employed in the design of PnCs. The advantages and drawbacks of the methods used in this area are discussed in detail in this paper. Based on observations of the current state, we highlight suggestions and ideas for future research in the field of phononic crystal design optimization. The paper examines how applying topology optimization techniques into the design of PnCs yields promising performance and functions. This literature survey is designed to provide an overview of the recent advances and novel applications of popular topology optimization methods for the design of PnCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acar G, Yilmaz C (2013) Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures. J Sound Vib 332(24):6389–6404

    Article  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Lethawe MA, Addouche M, Khelif A, Guenneau S (2012) All-angle negative refraction for surface acoustic waves in pillar-based two-dimensional phononic structures. New J Phys 14(12):123030

    Article  Google Scholar 

  • Alonso-Redondo E, Schmitt M, Urbach Z, Hui C, Sainidou R, Rembert P, Matyjaszewski K, Bockstaller M, Fytas G (2015) A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids. Nat Commun 6:8309. doi:10.1038/ncomms9309

    Article  Google Scholar 

  • Andreassen E, Jensen JS (2014) Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials. Struct Multidiscip Optim 49(5):695–705

    Article  MathSciNet  Google Scholar 

  • Anjos V, Arantes A (2015) Phononic band structure in carbon microtube composites. RSC Adv 5(15):11248–11253

    Article  Google Scholar 

  • Babaee S, Wang P, Bertoldi K (2015) Three-dimensional adaptive soft phononic crystals. J Appl Phys 117:244903

    Article  Google Scholar 

  • Baboly MG, Soliman Y, Su MF, Reinke CM, Leseman ZC, El-Kady I (2014) Enhanced plane wave expansion analysis for the band structure of bulk modes in two-dimensional high-contrast solid–solid phononic crystals. Photonics Nanostruct Fundam Appl 12(5):487–492

    Article  Google Scholar 

  • Badreddine AM, Oudich M (2011) Dispersion curves of surface acoustic waves in a two-dimensional phononic crystal. Appl Phys Lett 99(12):123505

    Article  Google Scholar 

  • Barbarosie C, Neves MM (2004) Periodic structures for frequency filtering: analysis and optimization. Comput Struct 82(17-19):1399–1403

    Article  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bilal OR, Hussein MI (2011a) Ultrawide phononic band gap for combined in-plane and out-of-plane waves. Phys Rev E 84(6):065701

    Article  Google Scholar 

  • Bilal OR, Hussein MI (2011b) Optimization of phononic crystals for the simultaneous attenuation of out-of-plane and in-plane waves. Proceeding of the ASME 2011 International Mechanical Enginnering Congress and Exposition Novenber 11-17, 2011, Denver, Colorado, USA

  • Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37-38):4911–4928

    Article  MathSciNet  MATH  Google Scholar 

  • Bosman PAN (2012) On gradients and hybrid evolutionary algorithms for real-valued multi-objective optimization. IEEE Trans Evol Comput 16(1):51–69

    Article  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443–3459

    Article  MATH  Google Scholar 

  • Cadman JE, Zhou S, Chen Y, Li Q (2013) On design of multi-functional microstructural materials. J Mater Sci 48(1):51–66

    Article  Google Scholar 

  • Cao Y, Hou Z, Liu Y (2004a) Convergence problem of plane-wave expansion method for phononic crystals. Phys Lett A 327(2-3):247–253

    Article  MATH  Google Scholar 

  • Cao Y, Hou Z, Liu Y (2004b) Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals. Solid State Commun 132(8):539–543

    Article  Google Scholar 

  • Chen SK, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidiscip Optim 44(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Chen AL, Wang YS (2007) Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals. Phys B Condens Matter 392(1-2):369–378

    Article  Google Scholar 

  • Chiou MJ, Lin YC, Ono T, Esashi M, Yeh SL, Wu TT (2014) Focusing and waveguiding of Lamb waves in micro-fabricated piezoelectric phononic plates. Ultrasonics 54(7):1984–1990

    Article  Google Scholar 

  • Cox SJ, Dobson DC (1999) Maximizing band gaps in two-dimensional photonic crystals. SIAM J Appl Math 59(6):2108–2120

    Article  MathSciNet  MATH  Google Scholar 

  • Croënne C, Lee EJS, Hu H, Page JH (2011) Band gaps in phononic crystals: generation mechanisms and interaction effects. AIP Adv 1:041401. doi:10.1063/1.3675797

    Article  Google Scholar 

  • Dahl J, Jensen JS, Sigmund O (2008) Topology optimization for transient wave propagation problems in one dimension. Struct Multidiscip Optim 36(6):585–595

    Article  MathSciNet  MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetric algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Diaz AR, Sigmund O (2010) A topology optimization method for design of negative permeability metamaterials. Struct Multidiscip Optim 41(2):163–177

    Article  MathSciNet  MATH  Google Scholar 

  • Diaz AR, Haddow AG, Ma L (2005) Design of band-gap grid structures. Struct Multidiscip Optim 29(6):418–431

    Article  Google Scholar 

  • Ding YQ, Liu ZY, Qiu CY, Shi J (2007) Metamaterial with simultaneously negative bulk modulus and mass density. Phys Rev Lett 99(9):093904

    Article  Google Scholar 

  • Dong HW, Su XX, Wang YS (2014a) Multi-objective optimization of two-dimensional porpous phononic crystals. J Phys D Appl Phys 47(15):155301. doi:10.1088/0022-3727/47/15/155301

    Article  Google Scholar 

  • Dong HW, Su XX, Wang YS, Zhang CZ (2014b) Topology optimization of two-dimensional asymmetrical phononic crystals. Phys Lett A 378(4):434–441

    Article  MathSciNet  Google Scholar 

  • Dong HW, Su XX, Wang YS, Zhang CZ (2014c) Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Struct Multidiscip Optim 50(4):593–604

    Article  MathSciNet  Google Scholar 

  • Dong HW, Wang YS, Ma TX, Su XX (2014d) Topology optimization of simultaneous photonic and phononic bandgaps and highly effective phoxonic cavity. J Opt Soc Am 31(12):2946–2955

    Article  Google Scholar 

  • Dong HW, Wang YS, Wang YF, Zhang CZ (2015) Reducing symmetry in topology optimization of two-dimensional porous phononic crystals. Mater Sci arXiv:1503.07325

  • Economou EN, Sigalas MM (1993) Classical wave propagation in periodic structures: cermet versus network topology. Phys Rev B 48(18):13434–13438

    Article  Google Scholar 

  • El-Sabbagh A, Akl W, Baz A (2008) Topology optimization of periodic Mindlin plates. Finite Elem Anal Des 44(8):439–449

    Article  MathSciNet  Google Scholar 

  • Evgrafov A, Rupp CJ, Dunn ML, Maute K (2008) Optimal synthesis of tunable elastic wave-guides. Comput Methods Appl Mech Eng 198(2):292–301

    Article  MATH  Google Scholar 

  • Fan SKS, Chang JM, Chuang YC (2015) A new multi-objective particle swarm optimizer using empirical movement and diversified search strategies. Eng Optim 47(6):750–770. doi:10.1080/0305215X.2014.918116

    Article  Google Scholar 

  • Farhat M, Guenneau S, Enoch S, Movchan AB, Petursson GG (2010) Focussing bending waves via negative refraction in perforated thin plates. Appl Phys Lett 96(8):081909

    Article  Google Scholar 

  • Floquet G (1883) Sur les équations différentielles linéaires à coefficients périodiques. Ann Scie Écol Normale Supérieure 12(1883):47–88

    MathSciNet  MATH  Google Scholar 

  • Fomenko S, Golub M, Zhang C, Bui T, Wang YS (2014) In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals. Int J Solids Struct 51(13):2491–2503

    Article  Google Scholar 

  • Frazier MJ, Hussein MI (2015) Viscous-to-viscoelastic transition in phononic crystal and metamaterial band structures. J Acoust Soc Am 138:3169

    Article  Google Scholar 

  • Gain AL, Paulino GH (2012) Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation. Struct Multidiscip Optim 46(3):327–342

    Article  MathSciNet  MATH  Google Scholar 

  • Ganesh R, Gonella S (2015) Granular phononic crystals as tunable functional switches. Proceedings of the 2015 ICU International Congress on Ultrasonics, Metz, France. Phys Procedia 70:807–810

    Article  Google Scholar 

  • Gazalet J, Dupont S, Kastelik JC, Rolland Q, Djafari-Rouhani B (2013) A tutorial survey on waves propagating in periodic media: Electronic, photonic and phononic crystals. Perception of the Bloch theorem in both real and Fourier domains. Wave Motion 50(3):619–654

    Article  MathSciNet  Google Scholar 

  • Gazonas GA, Weile DS, Wildman R, Mohan A (2006) Genetic algorithm optimization of phononic bandgap structures. Int J Solids Struct 43(18-19):5851–5866

    Article  MATH  Google Scholar 

  • Gedney SD (2011) Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth Lect Comput Electromagn 6(1):1–250

    Article  MATH  Google Scholar 

  • Giacomini M, Désidéri JA, Duvigneau R (2014) Comparison of multiobjective gradient-based methods for structural shape optimization. [Research Report] RR-8511, INRIA. pp.26. <hal-00987801>

  • Gill PE, Murray W, Saunders MA (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006

    Article  MathSciNet  MATH  Google Scholar 

  • Goffaux C, Sánchez-Dehesa J (2003) Two-dimensional phononic crystals studied using a variational method: application to lattices of locally resonant materials. Phys Rev B 67(14):144301

    Article  Google Scholar 

  • Guest JK (2008) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37(5):463–473

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(85):081009

    Article  Google Scholar 

  • Ha S-H, Guest JK (2014) Optimizing inclusion shapes and patterns in periodic materials using discrete object projection. Struct Multidiscip Optim 50(1):65–80

  • Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1):1–12

    Article  Google Scholar 

  • Halkjær S, Sigmund O, Jensen JS (2005) Inverse design of phononic crystals by topology optimization. Z Krist Cryst Mater 220(9-10):895–905

    Google Scholar 

  • Halkjær S, Sigmund O, Jensen JS (2006) Maximizing band gaps in plate structures. Struct Multidiscip Optim 32(4):263–275

    Article  Google Scholar 

  • Hedayatrasa S, Abhary K, Uddin M (2015) Numerical study and topology optimization of 1D periodic bimaterial phononic crystal plates for bandgaps of low order Lamb waves. Ultrasonics 57:104–124

    Article  Google Scholar 

  • Hedayatrasa S, Abhary K, Uddin M, Ng CT (2016a) Optimum design of phononic crystal perforated plate structures for widest bandgap of fundamental guided wave modes and maximized in-plane stiffness. J Mech Phys Solids 89:31–58. doi:10.1016/j.jmps.2016.01.010

    Article  MathSciNet  Google Scholar 

  • Hedayatrasa S, Abhary K, Uddin M, Guest JM (2016b) Optimal design of tunable phononic bandgap plates under equibiaxial stretch. Smart Mater Struct 25:055025

    Article  Google Scholar 

  • Herrero JM, García-Nieto S, Blasco X, Romero-García V, Sánchez-Pérez JV, Garcia-Raffi L (2009) Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Struct Multidiscip Optim 39(2):203–215

    Article  Google Scholar 

  • Hladky-Hennion AC, Croënne C, Dubus B, Vasseur JR, Haumesser L, Manga D, Morvan B (2011) Negative refraction of elastic waves in 2D phononic crystals: contribution of resonant transmissions to the construction of the image of a point source. AIP Adv 1(4):041405

    Article  Google Scholar 

  • Hu C, Youn BD, Yoon HJ (2013) An adaptive dimension decomposition and reselection method for reliability analysis. Struct Multidiscip Optim 47(3):423–440

    Article  MathSciNet  MATH  Google Scholar 

  • Hussein MI, Hamza K, Hulbert GM, Scott RA, Saitou K (2006) Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Struct Multidiscip Optim 31(1):60–75. doi:10.1007/s00158-005-0555-8

    Article  Google Scholar 

  • Hussein MI, Hamza K, Hulbert GM, Saitou K (2007) Optimal synthesis of 2D phononic crystals for broadband frequency isolation. Waves Random Complex Media 17(4):491–510

    Article  MathSciNet  MATH  Google Scholar 

  • Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mecha Rev 66(4):040802

    Article  Google Scholar 

  • Izui K, Yamada T, Nishiwaki S, Tanaka K (2015) Multiobjective optimization using an aggregative gradient-based method. Struct Multidiscip Optim 51(1):173–182

    Article  Google Scholar 

  • Jensen JS (2007) Topology optimization problems for reflection and dissipation of elastic waves. J Sound Vib 301(1-2):319–340

    Article  Google Scholar 

  • Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289(4-5):967–986

    Article  Google Scholar 

  • Jensen JS, Sigmund O (2004a) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84(12):2022–2024

    Article  Google Scholar 

  • Jensen JS, Sigmund O (2004) Phononic band gap structures as optimal designs. IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics, Springer, Volume 113 of the series Solid Mechanics and Its Applications 73–83

  • Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B Opt Phys 22(6):1191–1198

    Article  Google Scholar 

  • Jung HS, Cho S (2004) Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elem Anal Des 41(3):311–331

    Article  MathSciNet  Google Scholar 

  • Jung BC, Yoon HJ, Oh HS, Lee GS, Yoo MJ, Youn BD, Huh YC (2015) Hierarchical model calibration for designing piezoelectric energy harvester in the presence of variability in material properties and geometry. Struct Multidiscip Optim. doi:10.1007/s00158-015-1310-4, online published

  • Kafesaki M, Economou EN (1999) Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys Rev B 60(17):11993

    Article  Google Scholar 

  • Kafesaki M, Sigalas MM, Economou EN (1995) Elastic wave band gaps in 3D periodic polymer matrix. Solid State Commun 96(5):285–289

    Article  Google Scholar 

  • Kafesaki M, Sigalas M, García N (2000) Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Phys Rev Lett 85:4044

    Article  Google Scholar 

  • Kaya OA, Cicek A, Ulug B (2012) Self-collimated slow sound in sonic crystals. J Phys D Appl Phys 45(36):365101

    Article  Google Scholar 

  • Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscip Optim 26(5):295–307

    Article  Google Scholar 

  • Khelif A, Djafari-Rouhani B, Vasseur JO, Deymier PA, Lambin P, Dobrzynski L (2002) Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal. Phys Rev B 65:174308

    Article  Google Scholar 

  • Khelif A, Choujaa A, Djafari-Rouhani B, Wilm M, Ballandras S, Laude V (2003) Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Phys Rev B 68(21):214301

    Article  Google Scholar 

  • Khelif A, Aoubiza B, Mohammadi S, Adibi A, Laude V (2006) Complete band gaps in two-dimensional phononic crystal slabs. Phys Rev E 74(4):046610

    Article  Google Scholar 

  • King PDC, Cox TJ (2007) Acoustic band gaps in periodically and quasiperiodically modulated waveguides. J Appl Phys 102(1):014902

    Article  Google Scholar 

  • Kohn W, Rostoker N (1951) Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys Rev 94:1111. doi:10.1103/physrev.94.1111

    Article  MATH  Google Scholar 

  • Korringa J (1947) On the calculation of the energy of a Bloch wave in a metal. Physica 13(6-7):392–400. doi:10.1016/0031-8914(47)90013-x

    Article  MathSciNet  Google Scholar 

  • Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S (1999) Self-collimating phenomena in photonic crystals. Appl Phys Lett 74(9):1212–1214

    Article  Google Scholar 

  • Kuang W, Hou Z, Liu Y (2004) The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals. Phys Lett A 332(5):481–490

    Article  MATH  Google Scholar 

  • Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022–2025

    Article  Google Scholar 

  • Kushwaha MS, Halevi P, Martínez G, Dobrzynski L, Djafari-Rouhani B (1994) Theory of acoustic band structure of periodic elastic composites. Phys Rev B 49(4):2313–2322

    Article  Google Scholar 

  • Lan M, Wei P (2013) Band gap of piezoelectric/piezomagnetic phononic crystal with graded interlayer. Acta Mech 225(6):1779–1794

    Article  MathSciNet  MATH  Google Scholar 

  • Laude V, Achaoui Y, Benchabane S, Khelif A (2009) Evanescent Bloch waves and the complex band structure of phononic crystals. Phys Rev B 80(9):092301

    Article  Google Scholar 

  • Lazarov BS, Matzen R, Elesin Y (2011) Topology optimization of pulse shaping filters using the Hilbert transform envelope extraction. Struct Multidiscip Optim 44(3):409–419

    Article  MathSciNet  MATH  Google Scholar 

  • Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization considering material and geometric uncertainties using stochastics collocation methods. Struct Multidiscip Optim 46(4):597–612

    Article  MathSciNet  MATH  Google Scholar 

  • Lee JW, Kim YY (2009) Topology optimization of muffler internal partitions for improving acoustical attenuation performance. Int J Numer Methods Eng 80(4):455–477

    Article  MATH  Google Scholar 

  • Li J, Liu Z, Qiu C (2006) Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal. Phys Rev B 73(5):054302

    Article  Google Scholar 

  • Li FL, Wang YS, Zhang C, Yu GL (2013a) Bandgap calculations of two-dimensional solid–fluid phononic crystals with the boundary element method. Wave Motion 50(3):525–541

    Article  MathSciNet  Google Scholar 

  • Li FL, Wang YS, Zhang C, Yu GL (2013b) Boundary element method for band gap calculations of two-dimensional solid phononic crystals. Eng Anal Bound Elem 37(2):225–235

    Article  MathSciNet  MATH  Google Scholar 

  • Li H, Tian Y, Ke Y, He S, Luo W (2014) Analysis of rayleigh surface acoustic waves propagation on piezoelectric phononic crystal with 3-D finite element model. 2014 I.E. International Ultrasonics Symposium Proceedings, September 2014, Chicago, IL, 2533–2536

  • Li YF, Huang X, Meng F, Zhou S (2016a) Evolutionary topological design for phononic band gap crystals. Struct Multidiscip Optim. doi:10.1007/s00158-016-1424-3, online published

  • Li YF, Huang X, Zhou S (2016b) Topological design of cellular phononic band gap crystals. Materials 9(3):186. doi:10.3390/ma9030186

    Article  Google Scholar 

  • Lin SCS, Huang TJ (2011) Tunable phononic crystals with anisotropic inclusions. Phys Rev B 83(17):174303

    Article  Google Scholar 

  • Liu ZY, Zhang XX, Mao YW, Zhu YY, Yang ZY, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736

    Article  Google Scholar 

  • Liu W, Chen J, Liu Y, Su X (2012) Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals. Phys Lett A 376(4):605–609

    Article  Google Scholar 

  • Liu M, Xiang J, Gao H, Jiang Y, Zhou Y, Li F (2014a) Research on band structure of one-dimensional phononic crystals based on wavelet finite element method. Comput Methods Appl Mech Eng 97(5):425–436

    MathSciNet  Google Scholar 

  • Liu W, Liu Y, Su X, Li Z (2014b) Finite element analysis of the interface/surface effect on the elastic wave band structure of two-dimensional nanosized phononic crystals. Int J Appl Mech 6(01):1450005

    Article  Google Scholar 

  • Liu ZF, Wu B, He CF (2014c) Band-gap optimization of two-dimensional phononic crystals based on genetic algorithm and FPWE. Waves Random Complex Media 24(3):286–305

    Article  MathSciNet  Google Scholar 

  • Liu ZF, Wu B, He CF (2015) Systematic topology optimization of solid-solid phononic crystals for multiple separate band-gaps with different polarizations. Ultrasonics. doi:10.1016/j.ultras.2015.09.017

    Google Scholar 

  • Lu MH, Feng L, Chen YF (2009) Phononic crystals and acoustic metamaterials. Mater Today 12(12):34–42

    Article  Google Scholar 

  • Lucklum R, Ke M, Zubtsov M (2012) Two-dimensional phononic crystal sensor based on a cavity mode. Sens Actuators B 171:271–277

    Article  Google Scholar 

  • Ma TX, Wang YS, Zhang CZ (2014) Investigation of dual photonic and phononic badgaps in two-dimensional phoxonic crystals with veins. Opt Commun 312:68–72

    Article  Google Scholar 

  • Maldovan M (2013) Sound and heat revolutions in phononics. Nature 503(7475):209–217

    Article  Google Scholar 

  • Maldovan M (2015) Phonon wave interference and thermal bandgap materials. Nat Mater 14(7):667–674

    Article  Google Scholar 

  • Maldovan M, Thomas EL (2009) Periodic materials and interference lithography, for photonics, phononics and mechanics. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Man KF, Tang KS, Kwong S (1996) Genetic Algorithms: concepts and applications. IEEE Trans Ind Electron 43(5):519–534

    Article  Google Scholar 

  • Martins JRRA, Hwang JT (2013) Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J 51(11):2582–2599

    Article  Google Scholar 

  • Matar OB, Robillard JF, Vasseur JO, Hladky-Hennion AC, Deymier PA, Pernod P, Preobrazhensky V (2012) Band gap tunability of magneto-elastic phononic crystal. J Appl Phys 111(5):054901

  • Matsuki T, Yamada T, Izui K, Nishiwaki S (2014) Topology optimization for locally resonant sonic materials. Appl Phys Lett 104(19):191905

    Article  Google Scholar 

  • Maute K, Frangopol DM (2003) Reliability-based design of MEMS mechanisms by topology optimization. Comput Struct 81(8):813–824

    Article  Google Scholar 

  • Mei J, Liu Z, Qiu C (2005) Multiple-scattering theory for out-of-plane propagation of elastic waves in two-dimensional phononic crystals. J Phys Condens Matter 17(25):3735

    Article  Google Scholar 

  • Men H, Lee KY, Freund RM, Peraire J, Johnson SG (2014) Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Opt Express 22(19):22632–22648

    Article  Google Scholar 

  • Meng F, Huang XD, Jia BH (2015) Bi-directional evolutionary optimization for photonic band gap structures. J Comput Phys 302:393–404

    Article  MathSciNet  MATH  Google Scholar 

  • Min R, Wu F, Zhong L, Zhong H, Zhong S, Liu Y (2006) Extreme acoustic band gaps obtained under high symmetry in 2D phononic crystals. J Phys D Appl Phys 39(10):2272–2276

    Article  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525–539

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen TH, Song J, Paulino GH (2011) Single-loop system reliability-based topology optimization considering statistical dependence between limit-states. Struct Multidiscip Optim 44(5):593–611

    Article  MathSciNet  MATH  Google Scholar 

  • Norato JA, Bell BK, Tortorelli DA (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327

    Article  MathSciNet  Google Scholar 

  • Oh JH, Kim YJ, Kim YY (2013) Wave attenuation and dissipation mechanisms in viscoelastic phononic crystals. J Appl Phys 113:106101

    Article  MathSciNet  Google Scholar 

  • Olsson RH III, El-Kady I (2009) Microfabricated phononic crystal devices and applications. Meas Sci Technol 20(1):012002

    Article  Google Scholar 

  • Otomori M, Yamada T, Izui K, Nishiwaki S, Andkjær J (2012) A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials. Comput Methods Appl Mech Eng 237–240:192–211

    Article  MathSciNet  MATH  Google Scholar 

  • Park JH, Ma PS, Kim YY (2015) Design of phononic crystals for self-collimation of elastic waves using topology optimization method. Struct Multidiscip Optim 51(6):1199–1209

    Article  MathSciNet  Google Scholar 

  • Pennec Y, Vasseur JO, Djafari-Rouhani B, Dobrzyński L, Deymier PA (2010) Two-dimensional phononic crystals: examples and applications. Surf Sci Rep 65(8):229–291

    Article  Google Scholar 

  • Ponge MF, Dubus B, Granger C, Vasseur J, Thi MP, Hladky-Hennion AC (2015) Optimization of a tunable piezoelectric resonator using phononic crystals with periodic electrical boundary conditions. Phys Procedia 70:258–261

    Article  Google Scholar 

  • Qiu C, Liu Z, Mei J, Ke M (2005) The layer multiple-scattering method for calculating transmission coefficients of 2D phononic crystals. Solid State Commun 134(11):765–770

    Article  Google Scholar 

  • Rahmatalla SF, Swan CC (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidiscip Optim 27(1-2):130–135

    Article  Google Scholar 

  • Rohan E, Miara B (2006) Modelling and sensitivity analysis for design of phononic crystals. Proc Appl Mathe Mech 6(1):505–506

    Article  Google Scholar 

  • Romero-García V, Sánchez-Pérez JV, Garcia-Raffi L, Herrero J, García-Nieto S, Blasco X (2009) Hole distribution in phononic crystals: design and optimization. J Acoust Soc Am 125(6):3774–3783

    Article  Google Scholar 

  • Romero-García V, Sánchez-Pérez JV, Garcia-Raffi LM (2012) Molding the acoustic attenuation in quasi-ordered structures: experimental realization. Appl Phys Express 5(8):087301

    Article  Google Scholar 

  • Rupp CJ, Evgrafov A, Maute K, Dunn ML (2007) Design of phononic materials/structures for surface wave devices using topology optimization. Struct Multidiscip Optim 34(2):111–121

    Article  MathSciNet  MATH  Google Scholar 

  • Rupp CJ, Dunn ML, Maute K (2010) Switchable phononic wave filtering, guiding, harvesting, and actuating in polarization-patterned piezoelectric solids. Appl Phys Lett 96(11):111902

    Article  Google Scholar 

  • Sánchez-Pérez JV, Caballero D, Mártinez-Sala R, Rubio C, Sánchez-Dehesa J, Meseguer F, Llinares J, Gálvez F (1998) Sound attenuation by a two-dimensional array of rigid cylinders. Phys Rev Lett 80(24):5325–5328

    Article  Google Scholar 

  • Sato Y, Izui K, Yamada T, Nishiwaki S (2016) Gradient-based multiobjective optimization using a distance constraint technique and point replacement. Eng Optim 48(7):1226–1250

    Article  MathSciNet  Google Scholar 

  • Sigalas MM (1997) Elastic wave band gaps and defect states in two-dimensional composites. Acoust Soc Am 101(3):1256–1261

    Article  Google Scholar 

  • Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vib 158(2):377–382

    Article  Google Scholar 

  • Sigalas MM, Economou EN (1993) Band structure of elastic waves in two dimensional systems. Solid State Commun 86(3):141–143

    Article  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans R Soc London Ser A Math Phys Eng Sci 361(1806):1001–1019. doi:10.1098/rsta.2003.1177

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2001a) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127

    Article  Google Scholar 

  • Sigmund O (2001b) Design of multiphysics actuators using topology optimization–part II: two-material structures. Comput Methods Appl Mech Eng 190(49):6605–6627

    Article  MATH  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4):401–424

    Article  Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43(5):589–596

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2001) Microstructural design of elastic band-gap structures. Proceeding of the 4th World Congress of Structural and Multidisciplinary Optimization, June 4-8, 2001, Dalian, China

  • Sigmund O, Jensen JS (2002) Topology optimization of phononic band-gap materials and structures. Fifth World Congress on Computational Mechanics, Vienna, Austria

  • Sigmund O, Maute K (2013) Topology optimization approaches, a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Silva M, Tortorelli DA, Norato JA, Ha C, Bae HR (2010) Component and system reliability-based topology optimization using a single-loop method. Struct Multidiscip Optim 41(1):87–106

    Article  MathSciNet  MATH  Google Scholar 

  • Su XX, Wang YF, Wang YS (2010) A postprocessing method based on high-resolution spectral estimation for FDTD calculation of phononic band structures. Phys B 405(2):2444–2449

    Article  Google Scholar 

  • Su XX, Wang YF, Wang YS (2012) Effects of Poisson’s ratio on the band gaps and defect states in two-dimensional vacuum/solid porous phononic crystals. Ultrasonics 52(2):255–265

    Article  Google Scholar 

  • Sun JH, Wu TT (2006) Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method. Phys Rev B 74(17):174305

    Article  Google Scholar 

  • Sun JH, Wu TT (2007) Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method. Phys Rev B 76(10):104304

    Article  Google Scholar 

  • Suresh K (2010) A 199-line Matlab code for Pareto-optimal tracing in topology optimization. Struct Multidiscip Optim 42(5):665–679

    Article  MathSciNet  MATH  Google Scholar 

  • Suresh K (2013) Efficient generation of large-scale Pareto-optimal topologies. Struct Multidiscip Optim 47(1):49–61

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K, Svärd H (2013) Density filters for topology optimization based on the Pythagorean means. Struct Multidiscip Optim 48(5):859–875

    Article  MathSciNet  Google Scholar 

  • Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, London

    MATH  Google Scholar 

  • Tai K, Akhtar S (2005) Structural topology optimization using a genetic algorithm with a morphological geometric representation scheme. Struct Multidiscip Optim 30(2):113–127

    Article  Google Scholar 

  • Takezawa A, Kitamura M (2014) Phase field method to optimize dielectric devices for electromagnetic wave propagation. J Comput Phys 257(Part A):216–240

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Nishwaki S, Kitamura M (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys 229(7):2697–2718

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka Y, Tomoyasu Y, Tamura S (2000) Band structure of acoustic waves in phononic lattices two-dimensional composites with large acoustic mismatch. Phys Rev B 62(11):7387–7392

    Article  Google Scholar 

  • Taniker S, Yilmaz C (2013) Phononic gaps induced by inertial amplification in BCC and FCC lattices. Phys Lett A 377(31-33):1930–1936

    Article  Google Scholar 

  • Tootkaboni M, Asadpoure A, Guest JK (2012) Topology optimization of continuum structures under uncertainty—a polynomial chaos approach. Comput Methods Appl Mech Eng 201–204:263–275

    Article  MathSciNet  MATH  Google Scholar 

  • Vasseur JO, Dobrzynski L, Djafari-Rouhani B, Puszkarski H (1996) Magnon band structure of periodic composites. Phys Rev B 54(2):1043–1049

    Article  Google Scholar 

  • Vasseur JO, Deymier PA, Frantziskonis G, Hong G, Djafari-Rouhani B, Dobrzynski L (1998) Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media. J Phys Condens Matter 10(27):6051–6064

    Article  Google Scholar 

  • Vasseur JO, Matar OB, Robillard JF, Hladky-Hennion AC, Deymier PA (2011) Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials. AIP Adv 1:041904

    Article  Google Scholar 

  • Vatanabe SL, Silva ECN (2011) Design of phononic band gaps in functionally graded piezocomposite materials by using topology optimization. Proceedings of COBEM 2011, 21st International Congress of Mechanical Engineering, Octorber 24-28, 2011, Natal, RN, Brazil

  • Vatanabe SL, Paulino GH, Silva ECN (2014) Maximizing phononic band gaps in piezocomposite materials by means of topology optimization. J Acoust Soc Am 136(2):494–501

    Article  Google Scholar 

  • Veres IA, Berer T (2012) Complexity of band structures: semi-analytical finite element analysis of one-dimensional surface phononic crystals. Phys Rev B 86(10):104304

    Article  Google Scholar 

  • Veres IA, Berer T, Matsuda O (2013) Complex band structures of two dimensional phononic crystals: analysis by the finite element method. J Appl Phys 114(8):083519

    Article  Google Scholar 

  • Wang SY, Tai K (2005) Structural topology design optimization using genetic algorithms with a bit-array representation. Comput Methods Appl Mech Eng 194(36-38):3749–3770

    Article  MATH  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Wang G, Chen J, Cai T, Xin B (2013a) Decomposition-based multi-objective differential evolution Particle Swarm optimization for the design of a tubular permanent magnet linear synchronous motor. Eng Optim 45(9):1107–1127

    Article  MathSciNet  Google Scholar 

  • Wang P, Shim JM, Bertoldi K (2013b) Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Phys Rev B 88:014304

    Article  Google Scholar 

  • Wang Y, Kang Z, He Q (2013c) An adaptive refinement approach for topology optimization based on separated density field description. Comput Struct 117:10–22

    Article  Google Scholar 

  • Wu F, Gao Q, Xu X, Zhong W (2014) Expectation-based approach for one-dimensional randomly disordered phononic crystals. Phys Lett A 378(16):1043–1048

    Article  MathSciNet  MATH  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Yang R, Chuang C (1994) Optimal topology design using linear programming. Comput Struct 52(2):265–275

    Article  MATH  Google Scholar 

  • Yang S, Page J, Liu Z, Cowan M, Chan CT, Sheng P (2002) Ultrasound tunneling through 3D phononic crystals. Phys Rev Lett 88(10):104301

    Article  Google Scholar 

  • Yang LN, Yang N, Li BW (2013) Reduction of thermal conductivity by nanoscale 3D phononic crystal. Sci Rep 3:1143

    Google Scholar 

  • Yang A, Li P, Wen Y, Yang C, Wang D, Zhang F, Zhang J (2015) High-Qcross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting. Appl Phys Express 8(5):057101

    Article  Google Scholar 

  • Yao ZJ, Yu GL, Wang YS (2013a) Point defect states of phononic crystal thin plates—an application of finite element method. Adv Mater Res 602–604:1419–1422

    Google Scholar 

  • Yao ZJ, Yu GL, Wang YS, Hu WJ (2013b) Linear defect states of phononic crystal thin plates—an application of finite element method. Adv Mater Res 652–654:48–51

    Google Scholar 

  • Yeh JY (2013) Application and analysis of phononic crystal energy harvesting devices. J Eng Technol Educ 10(1):18–26

    Google Scholar 

  • Yi GL, Sui YK (2016a) An adaptive approach to adjust constraint bounds and its application in structural topology optimization. J Optim Theory Appl 169(2):656–670. doi:10.1007/s10957-014-0611-x

    Article  MathSciNet  MATH  Google Scholar 

  • Yi GL, Sui YK (2016b) TIMP method for topology optimization of plate structures with displacement constraints under multiple loading cases. Struct Multidiscip Optim 53(6):1185–1196. doi:10.1007/s00158-015-1314-0

    Article  MathSciNet  Google Scholar 

  • Yilmaz C, Hulbert GM (2010) Theory of phononic gaps induced by inertial amplification in finite structures. Phys Lett A 374(34):3576–3584

    Article  Google Scholar 

  • Youn BD, Xi ZM, Wang PF (2008) Eigenvector Dimension-Reduction (EDR) method for sensitivity-free probability analysis. Struct Multidiscip Optim 37(1):13–28

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Liu Z (2004) Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl Phys Lett 85(2):341

    Article  Google Scholar 

  • Zhang Y, Ni Z, Han L, Zhang ZM, Chen H (2011) Study of improved plane wave expansion method on phononic crystal. Optoelectron Adv Mater 5(8):870–873

    Google Scholar 

  • Zhang P, Wang ZY, Zhang YQ, Liang X (2013) Multi-band design for one-dimensional phononic crystals. Sci China Phys Mech Astron 56(7):1253–1262. doi:10.1007/s11433-013-5093-6

    Article  Google Scholar 

  • Zhao D, Wang W, Liu Z, Shi J, Wen W (2007) Peculiar transmission property of acoustic waves in a one-dimensional layered phononic crystal. Phys B Condens Matter 390(1):159–166

    Google Scholar 

  • Zhao YY, Li HL, Luo W, Wei JB, Liang Y, He ST (2012) Finite difference time domain analysis of two-dimensional piezoelectric phononic crystals. 2012 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), Shanghai

  • Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):309–336

    Article  Google Scholar 

  • Zhou S, Li W, Chen Y, Sun G, Li Q (2011) Topology optimization for negative permeability metamaterials using level-set algorithm. Acta Mater 59(7):2624–2636

    Article  Google Scholar 

  • Zhou M, Lazarov BS, Wang F, Sigmund O (2015) Minimum length scale in topology optimization by geometric constraints. Comput Methods Appl Mech Eng 293:266–282

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Mr. Heonjun Yoon and Mr. Yong Chang Shin for their helpful discussions and support of this work. This work was supported by the National Research Foundation of Korea (NRF) through a grant funded by the Korea Government (MSIP) (NRF-2015R1A2A1A16074934), and the Brain Korea 21 Plus project in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeng D. Youn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, G., Youn, B.D. A comprehensive survey on topology optimization of phononic crystals. Struct Multidisc Optim 54, 1315–1344 (2016). https://doi.org/10.1007/s00158-016-1520-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1520-4

Keywords

Navigation