Skip to main content
Log in

A computational paradigm for multiresolution topology optimization (MTOP)

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the analysis, the design variable mesh to perform the optimization, and the density mesh (or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida SRM, Paulino GH, Silva ECN (2009) A simple and effective inverse projection scheme for void distribution control in topology optimization. Struct Multidisc Optim 39(4):359–371

    Article  MathSciNet  Google Scholar 

  • Amir O, Bendsøe MP, Sigmund O (2009) Approximate reanalysis in topology optimization. Int J Numer Methods Eng 78(12):1474–1491

    Article  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, New York

    Google Scholar 

  • Borrvall T, Petersson J (2001) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(8):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Carbonari RC, Silva ECN, Paulino GH (2009) Multi-actuated functionally graded piezoelectric micro-tools design: a multiphysics topology optimization approach. Int J Numer Methods Eng 77(3):301–336

    Article  MATH  Google Scholar 

  • Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis. Wiley, New York, pp 96–100

    Google Scholar 

  • de Ruiter MJ, van Keulen F (2004) Topology optimization using a topology description function. Struct Multidisc Optim 26(6):406–416

    Article  Google Scholar 

  • de Sturler E, Paulino GH, Wang S (2008) Topology optimization with adaptive mesh refinement. In: Proceeding of the 6th international conference on computational of shell and spatial structures, IASS-IACM, 28–31 May 2008. Cornell University, Ithaca, NY, USA

  • Diaz AR, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Multidisc Optim 10(1):40–45

    Google Scholar 

  • Guest JK, Genut LCS (2009) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Eng. doi:10.1002/nme.2724

    Google Scholar 

  • Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Kim YY, Yoon GH (2000) Multi-resolution multi-scale topology optimization—a new paradigm. Int J Solids Struct 37(39):5529–5559

    Article  MathSciNet  MATH  Google Scholar 

  • Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59(14):1925–1944

    Article  MathSciNet  MATH  Google Scholar 

  • Paulino GH, Le CH (2009) A modified Q4/Q4 element for topology optimization. Struct Multidisc Optim 37(3):255–264

    Article  MathSciNet  Google Scholar 

  • Paulino GH, Almeida SRM, Silva ECN (2008) Pattern repetition in topology optimization of functionally graded material. In: Proceedings of the multiscale, multifunctional and functionally graded materials conference, 22–25 September 2008. Sendai, Japan

    Google Scholar 

  • Paulino GH, Pereira A, Talischi C, Menezes IFM, Celes W (2008) Embedding of superelements for three-dimensional topology optimization. In: Proceedings of Iberian Latin American congress on computational methods in engineering (CILAMCE)

  • Paulino GH, Silva ECN, Le CH (2009) Optimal design of periodic functionally graded composites with prescribed properties. Struct Multidisc Optim 38(5):469–489

    Article  MathSciNet  Google Scholar 

  • Pomezanski V, Querin OM, Rozvany GIN (2005) CO-SIMP: extended SIMP algorithm with direct corner contact control. Struct Multidisc Optim 30(2):164–168

    Article  Google Scholar 

  • Poulsen TA (2002a) Topology optimization in wavelet space. Int J Numer Methods Eng 53(3):567–582

    Article  MathSciNet  MATH  Google Scholar 

  • Poulsen TA (2002b) A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization. Struct Multidisc Optim 24(5):396–399

    Article  Google Scholar 

  • Rahmatalla SF, Swan CC (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidisc Optim 27(1–2):130–135

    Article  Google Scholar 

  • Rozvany GIN (1996) Some shortcomings in Michell’s truss theory. Struct Multidisc Optim 12(4):244–250

    MathSciNet  Google Scholar 

  • Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21(2):90–108

    Article  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3–4):250–252

    Google Scholar 

  • Sigmund O (2000) Topology optimization: a tool for the tailoring of structures and materials. Philos Trans Math Phys Eng Sci 358(1765):211–227

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21(2):120–127

    Article  Google Scholar 

  • Sigmund O, Peterson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16(1):68–75

    Google Scholar 

  • Stainko R (2006) An adaptive multilevel approach to the minimal compliance problem in topology optimization. Commun Numer Methods Eng 22(2):109–118

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318

    Article  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Talischi C, Paulino GH, Le CH (2009) Honeycomb Wachspress finite elements for structural topology optimization. Struct Multidisc Optim 37(6):569–583

    Article  MathSciNet  Google Scholar 

  • Wang S, Sturler E, Paulino GH (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441–2468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaucio H. Paulino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T.H., Paulino, G.H., Song, J. et al. A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidisc Optim 41, 525–539 (2010). https://doi.org/10.1007/s00158-009-0443-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-009-0443-8

Keywords

Navigation