Skip to main content
Log in

Design of phononic materials/structures for surface wave devices using topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We develop a topology optimization approach to design two- and three-dimensional phononic (elastic) materials, focusing primarily on surface wave filters and waveguides. These utilize propagation modes that transmit elastic waves where the energy is contained near a free surface of a material. The design of surface wave devices is particularly attractive given recent advances in nano- and micromanufacturing processes, such as thin-film deposition, etching, and lithography, which make it possible to precisely place thin film materials on a substrate with submicron feature resolution. We apply our topology optimization approach to a series of three problems where the layout of two materials (silicon and aluminum) is sought to achieve a prescribed objective: (1) a grating to filter bulk waves of a prescribed frequency in two and three dimensions, (2) a surface wave device that uses a patterned thin film to filter waves of a single or range of frequencies, and (3) a fully three-dimensional structure to guide a wave generated by a harmonic input on a free surface to a specified output port on the surface. From the first to the third example, the resulting topologies increase in sophistication. The results demonstrate the power and promise of our computational framework to design sophisticated surface wave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu U, Chopra A (2003) Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Comput Methods Appl Mech Eng 192:1337–1375

    Article  MATH  Google Scholar 

  • Belytschko T, Mullen R (1978) On dispersive properties of finite element solutions. In: Miklowitz J, Achenbach JD (eds) Modern problems in elastic wave propagation. John Wiley, Chichester

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200

    Article  MATH  MathSciNet  Google Scholar 

  • Bhushan B (ed) (2004) Springer handbook of nanotechnology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41(1):77–107

    Article  MATH  MathSciNet  Google Scholar 

  • Brillouin L (1953) Wave propagation in periodic structures, electric filters and periodic lattices. McGraw-Hill, New York

    MATH  Google Scholar 

  • Chen G (2005) Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. MIT-Pappalardo series in mechanical engineering. Oxford University Press, London

    Google Scholar 

  • Cox SJ, Dobson DC (1999) Maximizing bandgaps in two-dimensional photonic crystals. SIAM J Appl Math 59:2108–2120

    Article  MATH  MathSciNet  Google Scholar 

  • Cox SJ, Dobson DC (2000) Band structure optimization of two-dimensional photonic crystals in H-polarization. J Comput Phys 158:214–224

    Article  MATH  Google Scholar 

  • Diaz AR, Haddow AG, Ma L (2005) Design of band-gap grid structures. Struct Multidiscipl Optim 29:418–431

    Article  Google Scholar 

  • Dobson DC (2005) Optimal mode coupling in simple planar waveguides. Proceeding of the IUTAM symposium on topological design optimization of structures, machines and materials—status and perspectives. Rungstedgaard, Copenhagen, 311–320, October 2005

  • Elachi C (1976) Waves in active and passive periodic structures: a review. Proc IEEE 64:1666–1698

    Article  Google Scholar 

  • Evgrafov A (2005a) On the limits of porous materials in the topology optimization of Stokes flows. Appl Math Optim 52(3):263–267

    Article  MATH  MathSciNet  Google Scholar 

  • Evgrafov A (2005b) Topology optimization of slightly compressible fluids. ZAMM Z Angew Math Mech 86(1):46–62

    Article  MathSciNet  Google Scholar 

  • Evgrafov A, Pingen G, Maute K (2005) Topology optimization of fluid problems by the lattice Boltzmann method. Proceeding of the IUTAM symposium on topological design optimization of structures, machines and materials—status and perspectives, Rungstedgaard, Copenhagen, 26–29 October 2005

  • Frenzel M (2004) Topology optimization for wave problems. Master Thesis, Center for Aerospace Structures, Department of Aerospace Engineering Sciences, University of Colorado

  • Gersborg-Hansen A, Bendsøe MP, Sigmund O (2005a) Topology optimization using the finite volume method. Proceedings of WCSMO6, Rio de Janeiro, Brasil, 30 May–3 June 2005

  • Gersborg-Hansen A, Sigmund O, Haber R (2005b) Topology optimization of channel flow problems. Struct Multidiscipl Optim 30(3):181–192 DOI 10.1007/s00158-004-0508-7

  • Gibiansky LV, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498

    Article  MATH  MathSciNet  Google Scholar 

  • Gill P, Murray W, Saunders M (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006

    Article  MATH  MathSciNet  Google Scholar 

  • Gorishnyy T, Ullal CK, Maldovan M, Fytas G, Thomas EL (2005) Hypersonic phononic crystals. Phys Rev Lett 94:115501

    Article  Google Scholar 

  • Graff KF (1975) Wave motion in elastic solids. Dover, New York

    MATH  Google Scholar 

  • Harari I, Albocher U (2006) Studies of FE/PML for exterior problems of time-harmonic elastic waves. Comput Methods Appl Mech Eng 195(29–32):3854–3879

    Article  MathSciNet  MATH  Google Scholar 

  • Huang WQ, Chen HQ, Shuai Z, Wang L, Hu W, Zou BS (2005) Acoustic-phonon transmission and thermal conductance in a double-bend quantum waveguide. J Appl Phys 98:093524

    Article  Google Scholar 

  • Hussein MI, Hulbert GM, Scott RA (2003) Band-gap engineering of elastic waveguides using periodic materials, paper no. IMECE2003-41886. Proceedings of IMECE’03, 2003 ASME international mechanical engineering congress & exposition, Washington, DC, 16–21 November 2003

  • Hussein MI, Hulbert GM, Scott RA (2005) Hierarchial design of phononic materials and structures, paper no. IMECE2005-81325. Proceedings of IMECE’05, 2005 ASME international mechanical engineering congress & exposition, Orlando, 5–11 November 2005

  • Hussein MI, Hamza K, Hulbert GM, Scott RA, Saitou K (2006a) Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Struct Multidiscipl Optim 31:60–75

    Article  Google Scholar 

  • Hussein MI, Hulbert GM, Scott RA (2006b) Dispersive elastodynamics of 1D banded materials and structures: analysis. J Sound Vib 289:779–806

    Article  Google Scholar 

  • Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84:2002–2024

    Article  Google Scholar 

  • Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  • Kino GS (1987) Acoustic waves: devices, imaging, and analog signal processing. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Klarbring A, Petersson J, Torstenfelt B, Karlsson M (2003) Topology optimization of flow networks. Comput Methods Appl Mech Eng 192(35–36):3909–3932

    Article  MATH  MathSciNet  Google Scholar 

  • Kushwaha MS (1996) Classical band structure of periodic elastic composites. Int J Mod Phys B 10(9):977–1094

    Article  Google Scholar 

  • Li Q, Steven GP, Querin OM, Xie Y (1999) Shape and topology design for heat conduction by evolutionary structural optimization. Int J Heat Mass Transfer 42(17):3361–3371

    Article  MATH  Google Scholar 

  • Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan C, Sheng P (2000) Locally resonant sonic materials. Science 289:1734–1736

    Article  Google Scholar 

  • Lysmer J, Kuhlemeyer RL (1969) Finite dynamic model for infinite media. Proc ASCE 95:EM4

    Google Scholar 

  • Ma Z-D, Kikuchi N, Cheng H-C (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259–280

    Article  MATH  MathSciNet  Google Scholar 

  • Mukdadi O, Datta SK, Dunn ML (2005) Acoustic phonon dispersion in nanowires. J Appl Phys 97:074313

    Article  Google Scholar 

  • Min S, Kikuchi N, Park YC, Kim S, Chang S (1999) Optima topology design of structures under dynamics loads. Struct Multidiscipl Optim 17(2–3):208–218

    Google Scholar 

  • Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int J Numer Methods Eng 54(6):809–834

    Article  MATH  Google Scholar 

  • Pajot J, Maute K, Zhang Y, Dunn ML (2006) Design of patterned multilayer films with eigenstrains by topology optimization. Int J Solids Struct 43:1832–1853

    Article  MATH  Google Scholar 

  • Rockafellar RT, Wets RJ-B (1998) Variational analysis. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Sigalas M, Economou E (1992) Elastic and acoustic wave band structure. J Sound Vib 158:377–382

    Article  Google Scholar 

  • Sigmund O (2001) Design of multiphysics actuators using topology optimization—part I: one-material structures. Comp Methods Appl Mech Eng 190(49–50):6577–6604

    Article  MATH  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans R Soc Lond 361:1001–1019

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MATH  MathSciNet  Google Scholar 

  • Vasseur J, Deymier P, Frantziskonis G, Hong G, Djafari-Rouhani B, Dobrzynski L (1998) Experimental evidence for the existence of absolute acoustic bandgaps in two-dimensional periodic composite media. J Phys Condens Mater 10:6051–6064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Maute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupp, C.J., Evgrafov, A., Maute, K. et al. Design of phononic materials/structures for surface wave devices using topology optimization. Struct Multidisc Optim 34, 111–121 (2007). https://doi.org/10.1007/s00158-006-0076-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-006-0076-0

Keywords

Navigation