Skip to main content
Log in

A 199-line Matlab code for Pareto-optimal tracing in topology optimization

  • Educational Article
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The paper ‘A 99-line topology optimization code written in Matlab’ by Sigmund (Struct Multidisc Optim 21(2):120–127, 2001) demonstrated that SIMP-based topology optimization can be easily implemented in less than hundred lines of Matlab code. The published method and code has been used even since by numerous researchers to advance the field of topology optimization. Inspired by the above paper, we demonstrate here that, by exploiting the notion of topological-sensitivity (an alternate to SIMP), one can generate Pareto-optimal topologies in about twice the number of lines of Matlab code. In other words, optimal topologies for various volume fractions can be generated in a highly efficient manner, by directly tracing the Pareto-optimal curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Amstutz S (2006) Sensitivity analysis with respect to a local perturbation of the material property. Asymptot Anal 49(1–2):87–108

    MATH  MathSciNet  Google Scholar 

  • Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196

    Article  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362

    Article  MATH  MathSciNet  Google Scholar 

  • Céa J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188:713–726

    Article  MATH  Google Scholar 

  • Chen TY, Wu S-C (1998) Multiobjective optimal topology design of structures. Comput Mech 21:483–492

    Article  MATH  Google Scholar 

  • Cohon JL (1978) Multiobjective programming and planning, vol 140. Academic, London

    Google Scholar 

  • Dambrine M, Vial G (2005) Influence of a boundary perforation on the Dirichlet energy. Control Cybern 34(1):117–136

    MATH  MathSciNet  Google Scholar 

  • Das I, Dennis JE (1997) A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct Optim 14:63–69

    Article  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    MATH  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–389

    Article  Google Scholar 

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Article  Google Scholar 

  • Feijóo RA, Novotny AA, Taroco E, Padra C (2003) The topological derivative for the Poisson’s problem. Math Models Methods Appl Sci 13(12):1825–1844

    Article  MATH  MathSciNet  Google Scholar 

  • Feijóo RA, Novotny AA, Taroco E, Padra C (2005) The topological-shape sensitivity method in two-dimensional linear elasticity topology design. In: Idelsohn VSSR (ed) Applications of computational mechanics in structures and fluids. CIMNE, Barcelona

    Google Scholar 

  • Gopalakrishnan SH, Suresh K (2008) Feature sensitivity: a generalization of topological sensitivity. Finite Elem Anal Des 44(11):696–704

    Article  MathSciNet  Google Scholar 

  • Hamda H, Roudenko O, Schoenauer M (2002) Application of a multi-objective evolutionary algorithm to topology optimum design. In: Fifth international conference on adaptive computing in design and manufacture

  • Lin J, Luo Z, Tong L (2010) A new multi-objective programming scheme for topology optimization of compliant mechanisms. Struct Multidisc Optim 30:241–255

    Article  Google Scholar 

  • Luo Z, Chen L, Yang J, Zhang Y, Abdel-Malek K (2005) Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidisc Optim 30:142–154

    Article  Google Scholar 

  • Madeira JFA, Rodrigues H, Pina H (2005) Multi-objective optimization of structures topology by genetic algorithms. Adv Eng Softw 36:21–28

    Article  MATH  Google Scholar 

  • Messac A, Ismail-Yahaya A (2001) Required relationship between objective function and Pareto frontier orders: practical implications. AIAA J 39(11):2168–2174

    Article  Google Scholar 

  • Messac A, Sundararaj GJ, Tappeta RV, Renaud JE (2000) Ability of objective functions to generate points on non-convex Pareto frontiers. AIAA J 38(6):1084–1091

    Article  Google Scholar 

  • Norato JA, Bendsøe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidisc Optim 33:375–386

    Article  Google Scholar 

  • Novotny AA, Feijóo RA, Taroco E, Padra C (2003) Topological-shape sensitivity analysis. Comput Methods Appl Mech Eng 192(7):803–829

    Article  MATH  Google Scholar 

  • Novotny AA, Feijóo RA, Taroco E, Padra C (2005) Topological sensitivity analysis for three-dimensional linear elasticity problem. In: 6th world congress on structural and multidisciplinary optimization, Rio de Janeiro

  • Novotny AA, Feijóo RA, Taroco E, Padra C (2006) Topological-shape sensitivity method: theory and applications. Solid Mech Appl 137:469–478

    Article  Google Scholar 

  • Padhye N (2008) Topology optimization of compliant mechanism using multi-objective particle swarm optimization. In: GECCO’08, July 12–16. ACM, Atlanta

    Google Scholar 

  • Papalambros PY (2002) The optimization paradigm in engineering design: promises and challenges. Comput Aided Des 34(12):939–951

    Article  Google Scholar 

  • Rozvany GIN (2001a) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21(2):90–108

    Article  Google Scholar 

  • Rozvany GIN (2001b) Stress ratio and compliance based methods in topology optimization—a critical review. Struct Multidisc Optim 21(2):109–119

    Article  Google Scholar 

  • Samet B (2003) The topological asymptotic with respect to a singular boundary perturbation. Comptes Rendus Mathematique 336(12):1033–1038

    Article  MATH  MathSciNet  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21(2):120–127

    Article  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MATH  MathSciNet  Google Scholar 

  • Sokolowski J, Zochowski A (2003) Optimality conditions for simultaneous topology and shape optimization. SIAM J Control Optim 42(4):1198–1221

    Article  MATH  MathSciNet  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang WH, Yang HC (2002) Efficient gradient calculation of the Pareto optimal curve in multicriteria optimization. Struct Multidisc Optim 23:311–319

    Article  MATH  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier, Amsterdam

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Suresh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh, K. A 199-line Matlab code for Pareto-optimal tracing in topology optimization. Struct Multidisc Optim 42, 665–679 (2010). https://doi.org/10.1007/s00158-010-0534-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0534-6

Keywords

Navigation