Skip to main content
Log in

Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Wheat- Secale cereanum addition lines with yellow rust resistance (6R) and increased arabinoxylan content (1R, 4R, 6R) have been selected and identified in order to increase biodiversity of wheat.

Abstract

Perennial rye (Secale cereanum, 2n = 2x = 14, RR) cultivar Kriszta has a large gene pool that can be exploited in wheat breeding. It has high protein and dietary fibre content, carries several resistance genes, tolerant to frost and drought, and adapts well to disadvantageous soil and weather conditions. In order to incorporate agronomically useful features from this perennial rye into cultivated wheat, backcross progenies derived from a cross between the wheat line Mv9kr1 and perennial rye ‘Kriszta’ have been produced, and addition lines disomic for 1R, 4R and 6R chromosomes have been selected using GISH, FISH and SSR markers. Quality measurements showed that addition of ‘Kriszta’ chromosomes 4R and 6R to the wheat genome had increased the total protein content. The 4R addition line contained slightly, while 1R and 6R additions significantly higher amount of arabinoxylan than the parental wheat line. Besides this, the 6R addition line appeared to be resistant to yellow rust in highly infected nurseries, consequently it may carry a new effective gene different from that harboured in the 1RS.1BL translocation for resistance to this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akgün I, Tosun M (2004) Agricultural and cytological characteristics of M1 perennial rye (Secale montanum Guss.) as effected by the application of different doses of gamma rays. Pak J Biol Sci 7:827–833. doi:10.3923/pjbs.2004.827.833

    Article  Google Scholar 

  • Alkhimova AG, Heslop-Harrison JS, Shchapova AI, Vershinin AV (1999) Rye chromosome variability in wheat–rye addition and substitution lines. Chromosome Res 7:205–212. doi:10.1023/A:1009299300018

    Article  CAS  PubMed  Google Scholar 

  • An D, Zheng Q, Zhou Y et al (2013) Molecular cytogenetic characterization of a new wheat–rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res 21:419–432. doi:10.1007/s10577-013-9366-8

    Article  CAS  PubMed  Google Scholar 

  • An D, Zheng Q, Luo Q et al (2015) Molecular cytogenetic identification of a new wheat-rye 6R chromosome disomic addition line with powdery mildew resistance. PLoS One. doi:10.1371/journal.pone.0134534

    Google Scholar 

  • Andersson R, Fransson G, Tietjen M, Åman P (2009) Content and molecular-weight distribution of dietary fibre components in whole-grain rye flour and bread. J Agric Food Chem 57:2004–2008. doi:10.1021/jf801280f

    Article  CAS  PubMed  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can J Genet Cytol 26:701–705. doi:10.1139/g84-111

    Article  Google Scholar 

  • Aranyi NR, Molnár-Láng M, Hoffmann S, Hoffmann B (2014) Phenotypic characterization of wheat–barley “Mv9 kr1”/“Igri” introgression lines in the field. Plant Breed 133:718–721. doi:10.1111/pbr.12213

    Article  Google Scholar 

  • Asiedu R, Fisher JM, Driscoll CJ (1990) Resistance to Heterodera avenue in the rye genome of triticale. Theor Appl Genet 79:331–336. doi:10.1007/BF01186075

    Article  CAS  PubMed  Google Scholar 

  • Bartoš P (1993) Chromosome 1R of rye in wheat breeding. Pl Breed Abst 63:1203–1211

    Google Scholar 

  • Batey IL, Gupta RB, MacRitchie F (1991) Use of SE-HPLC in the study of wheat flour proteins: an improved chromatographic procedure. Cereal Chem 68:207–209

    CAS  Google Scholar 

  • Boros D, Lukaszewski AJ, Aniol A, Ochodzki P (2002) Chromosome location of genes controlling the content of dietary fibre and arabinoxylans in rye. Euphytica 128:1–8. doi:10.1023/A:1020639601959

    Article  CAS  Google Scholar 

  • Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 109:34–42. doi:10.1159/000082379

    Article  CAS  PubMed  Google Scholar 

  • Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225–243. doi:10.1006/jcrs.2001.0433

    Article  CAS  Google Scholar 

  • Cseh A, Kruppa K, Molnár I et al (2011) Characterization of a new 4BS.7HL wheat–barley translocation line using GISH, FISH, and SSR markers and its effect on the β-glucan content of wheat. Genome 54:795–804. doi:10.1139/g11-044

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Jouve N (1995) Fluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequences in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments. Genome 38:795–802. doi:10.1139/g95-101

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Jouve N (2002) Evolutionary trends of different repetitive DNA sequences during speciation in the genus secale. J Hered 93:339–345. doi:10.1093/jhered/93.5.339

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Schwarzacher T, Jouve N (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet 101:711–717. doi:10.1007/s001220051535

    Article  CAS  Google Scholar 

  • Cyran M, Rakowska M, Miazga D (1996) Chromosomal location of factors affecting content and composition of non-starch polysaccharides in wheat-rye addition lines. Euphytica 89:153–157. doi:10.1007/BF00015732

    Article  CAS  Google Scholar 

  • De Bustos A, Jouve N (2003) Characterisation and analysis of new HMW-glutenin alleles encoded by the Glu-R1 locus of Secale cereale. Theor Appl Genet 107:74–83. doi:10.1007/s00122-003-1234-z

    PubMed  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN et al (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680. doi:10.1007/BF00225004

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal AS, Mares DJ, Marshall DR (1990) Measurement of dough surface stickiness associated with the 1B/1R chromosome translocation in bread wheats. J Cereal Sci 12:165–175. doi:10.1016/S0733-5210(09)80098-2

    Article  Google Scholar 

  • Douglas SG (1981) A rapid method for the determination of pentosans in wheat flour. Food Chem 7:139–145. doi:10.1016/0308-8146(81)90059-5

    Article  CAS  Google Scholar 

  • Driscoll C, Sears ER (1971) Individual addition of the chromosomes of ‘Imperial’ rye to wheat. Agron Abst 6

  • Evans LE, Jenkins BC (1960) Individual secale cereale chromosome additions to Triticum Aestivum. I. the addition of individual “Dakold” fall rye chromosomes to “Kharkov” winter wheat and their subsequent identification. Can J Genet Cytol 2:205–215. doi:10.1139/g60-021

    Article  Google Scholar 

  • Friebe B, Heun M, Bushuk W (1989) Cytological characterization, powdery mildew resistance and storage protein composition of tetraploid and hexaploid 1BL/1RS wheat-rye translocation lines. Theor Appl Genet. doi:10.1007/BF00265307

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. doi:10.1007/BF00035277

    Article  Google Scholar 

  • Friebe BR, Tuleen NA, Gill BS (1999) Development and identification of a complete set of Triticum aestivum–Aegilops geniculata chromosome addition lines. Genome 42:374–380. doi:10.1139/g99-011

    Article  Google Scholar 

  • Gallego FJ, Benito C (1997) Genetic control of aluminium tolerance in rye (Secale cereale L.). Theor Appl Genet 95:393–399. doi:10.1007/s001220050575

    Article  CAS  Google Scholar 

  • Gallego FJ, Calles B, Benito C (1998) Molecular markers linked to the aluminium tolerance gene Alt1 in rye (Secale cereale L.). Theor Appl Genet 97:1104–1109. doi:10.1007/s001220050997

    Article  CAS  Google Scholar 

  • Gellrich C, Schieberle P, Wieser H (2003) Biochemical characterization and quantification of the storage protein (Secalin) types in rye flour. Cereal Chem J 80:102–109. doi:10.1094/CCHEM.2003.80.1.102

    Article  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J et al (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256. doi:10.1007/BF00226259

    Article  CAS  PubMed  Google Scholar 

  • Heun M, Friebe B, Bushuk W (1990) Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology 80:1129–1133. doi:10.1094/Phyto-80-1129

    Article  Google Scholar 

  • Jiang Q-T, Wei Y-M, Andre L et al (2010) Characterization of ω-secalin genes from rye, triticale, and a wheat 1BL/1RS translocation line. J Appl Genet 51:403–411. doi:10.1007/BF03208870

    Article  PubMed  Google Scholar 

  • Kasarda DD, Autran J-C, Lew EJ-L, Nimmo CC, Shewry PR (1983) N-terminal amino acid sequences of ω-gliadins and ω-secalins. BBA-Protein Struct M 747:138–150. doi:10.1016/0167-4838(83)90132-2

    Article  CAS  Google Scholar 

  • Kofler R, Bartoš J, Gong L, Stift G, Suchankova P et al (2008) Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1. Theor Appl Genet 117:915–926. doi:10.1007/s00122-008-0831-2

    Article  CAS  PubMed  Google Scholar 

  • Köhler P, Wieser H (2000) Comparative studies of high MrSubunits of Rye and Wheat. III. localisation of cysteine residues. J Cereal Sci 32:189–197. doi:10.1006/jcrs.2000.0324

    Article  Google Scholar 

  • Kotvics G (1970) Investigations on increasing the protein content of Secale cereale L. In: Bálint A (ed) Protein growth by plant breeding. Budapest, Akadémiai Kiadó, pp 89–98

    Google Scholar 

  • Kruppa J (2001) Rozs és triticale nemesítés és tájtermesztés eredményei. Dissertation, University of Debrecen (In Hungarian)

  • Kruppa K, Türkösi E, Szakács É, Cseh A, Molnár-Láng M (2013) Development and identification of a 4HL.5DL wheat/barley centric fusion using GISH, FISH and SSR markers. Cereal Res Commun 41:221–229. doi:10.1556/CRC.2012.0038

    Article  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation–a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi:10.1007/BF02342540

    Article  CAS  PubMed  Google Scholar 

  • Lei M-P, Li G-R, Zhou L et al (2013) Identification of wheat-Secale africanum chromosome 2Rafr introgression lines with novel disease resistance and agronomic characteristics. Euphytica 194:197–205. doi:10.1007/s10681-013-0913-3

    Article  CAS  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18S–5.8S–26S rRNA genes in barley by in situ hybridization. Genome 35:1013–1018. doi:10.1139/g92-155

    Article  CAS  Google Scholar 

  • Lelley T, Eder C, Grausgruber H (2004) Influence of 1BL.1RS wheat-rye chromosome translocation on genotype by environment interaction. J Cereal Sci 39:313–320. doi:10.1016/j.jcs.2003.11.003

    Article  CAS  Google Scholar 

  • Lewis SJ, Heaton KW (1999) The metabolic consequences of slow colonic transit. Am J Gastroenterol 94:2010–2016. doi:10.1111/j.1572-0241.1999.01271.x

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewski AJ (1988) A comparison of several approaches in the development of disomic alien addition lines of wheat. In: Miller TE, Koebner RMD (eds), Proceedings 7th Int. Wheat Genet Symp,. Cambridge, p 363–367

  • Lukaszewski AJ (2006) Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Sci 46:2183–2194. doi:10.2135/cropsci2006.03.0135

    Article  CAS  Google Scholar 

  • Lutz J, Limpert E, Bartoš P, Zeller FJ (1992) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Plant Breed 108:33–39. doi:10.1111/j.1439-0523.1992.tb00097.x

    Article  Google Scholar 

  • Marchylo BA, Kruger JE, Hatcher DW (1989) Quantitative reversed-phase high-performance liquid chromatographic analysis of wheat storage proteins as a potential quality prediction tool. J Cereal Sci 9:113–130. doi:10.1016/S0733-5210(89)80012-8

    Article  CAS  Google Scholar 

  • Martis MM, Zhou R, Haseneyer G et al (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698. doi:10.1105/tpc.113.114553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, et al (2003) Catalogue of gene symbols for wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds), Proc. 10th Intern. Wheat Genet. Symp. Vol. 4, Paestum, Italy, p 34

  • Miazga D, Chrza˛stek M (1987) Studies on the cv. Grana wheat (Triticum aestivum L.) lines with the cv. Dan´kowskie Złote rye (Secale cereale L.) chromosome additions. I. Chromosome configurations at metaphase I. Genetica Polonica 28:327–331

    Google Scholar 

  • Miller TE (1973) Alien chromosome additions and substitutions. In: Annual Report of Plant Breeding Institute. Plant Breeding Institute, Cambridge p 143

  • Miller TE (1984) The homoeologous relationship between the chromosomes of rye and wheat. Current status. Can J Genet Cytol 26:578–589

    Article  Google Scholar 

  • Molnár I, Kubaláková M, Šimková H et al (2014) Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. Theor Appl Genet 127:1091–1104. doi:10.1007/s00122-014-2282-2

    Article  PubMed  Google Scholar 

  • Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90:301–305. doi:10.1007/BF00027480

    Article  Google Scholar 

  • Molnár-Láng M, Linc G, Nagy ED, Schneider A, Molnár I (2002) Molecular cytogenetic analysis of wheat-alien hybrids and derivatives. Acta Agron Hung 50:303–311. doi:10.1556/AAgr.50.2002.3.8

    Article  Google Scholar 

  • Molnár-Láng M, Cseh A, Szakács É, Molnár I (2010) Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the 1BL.1RS translocation, for the rapid enrichment of 1RS with new allelic variation. Theor Appl Genet 120:1535–1545. doi:10.1007/s00122-010-1274-0

    Article  PubMed  Google Scholar 

  • Moore MA, Park CB, Tsuda H (1998) Soluble and insoluble fibre influences on cancer development. Crit Rev Oncol Hematol 27:229–242. doi:10.1016/S1040-8428(98)00006-7

    Article  CAS  PubMed  Google Scholar 

  • Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95. doi:10.1007/BF00356025

    Article  Google Scholar 

  • Murray FR, Skerritt JH, Appels R (2001) A gene from the Sec2 (Gli-R2) locus of a wheat 2RS.2BL chromosomal translocation line. Theor Appl Genet 102:431–439. doi:10.1007/s001220051664

    Article  CAS  Google Scholar 

  • Nkongolo KK, Lapitan NLV, Quick JS (1996) Genetic and cytogenetic analyses of Russian wheat aphid resistance in triticale × wheat hybrids and progenies. Crop Sci 36:1114. doi:10.2135/cropsci1996.0011183X003600050007x

    Article  Google Scholar 

  • O’Mara JG (1940) Cytogenetic studies on triticale. I. A method for determining the effects of individual Secale chromosomes on Triticum. Genetics 25:401–408

    PubMed  PubMed Central  Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91:5222–5226. doi:10.1073/pnas.91.12.5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis 84:203. doi:10.1094/PDIS.2000.84.2.203B

    Article  Google Scholar 

  • Pretorius ZA, Bender CM, Visser B, Terefe T (2010) First report of a Puccinia graminis f. sp. tritici race virulent to the Sr24 and Sr31 wheat stem rust resistance genes in South Africa. Plant Dis 94:784. doi:10.1094/PDIS-94-6-0784C

    Article  Google Scholar 

  • Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76:78–81

    Google Scholar 

  • Riley R (1955) The cytogenetics of the differences between some Secale species. J Agric Sci 46:377–383. doi:10.1017/S0021859600040284

    Article  Google Scholar 

  • Riley R, Chapman V (1958) The production and phenotypes of wheat-rye chromosome addition lines. Heredity 12:301–315. doi:10.1038/hdy.1958.31

    Article  Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972. doi:10.1139/g99-052

    Article  CAS  PubMed  Google Scholar 

  • Schlegel R (2015) Current list of wheats with rye and alien introgression V04-15, 1–18, http://www.rye-gene-map.de/rye-introgression

  • Shewry PR, Bechtel DB (2001) Morphology and chemistry of the rye grain. In: Bushuk W (ed) Rye: production, chemistry and technology, 2nd edn. Am Assoc Cereal Chem, St. Paul, pp 69–121

    Google Scholar 

  • Shewry PR, Field JM, Lew EJ-L, Kasarda DD (1982) The purification and characterization of two groups of storage proteins (secalins) from rye (Secale cereale L.). J Exp Bot 33:261–268. doi:10.1093/jxb/33.2.261

    Article  CAS  Google Scholar 

  • Shewry PR, Kreis M, Burgess SR et al (1983a) The synthesis and deposition of the prolamin storage proteins (secalins) of rye. Planta 159:439–445. doi:10.1007/BF00392080

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Parmar S, Miflin BJ (1983b) Extraction, separation and polymorphism of the prolamin storage proteins (secalins) of rye. Cereal Chem 60:1–6

    CAS  Google Scholar 

  • Shewry PR, Parmar S, Miller TE (1985) Chromosomal location of the structural genes for the Mr 75,000 γ-secalins in Secale montanum Guss: evidence for a translocation involving chromosomes 2R and 6R in cultivated rye (Secale cereale L.). Heredity 54:381–383. doi:10.1038/hdy.1985.53

    Article  CAS  Google Scholar 

  • Shewry PR, Parmar S, Fulrath N et al (1986) Chromosomal locations of the structural genes for secalins in wild perennial rye (Secale montanum Guss.) and cultivated rye (S. cereale L.) determined by two-dimensional electrophoresis. Can J Genet Cytol 28:76–83. doi:10.1139/g86-010

    Article  CAS  Google Scholar 

  • Stutz HC (1957) A cytogenetic analysis of the hybrid Secale cereale L. × Secale montanum guss. and its progeny. Genetics 42:199–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Fang J, Sun G (2009) Inheritance of genes controlling supernumerary spikelet in wheat line 51885. Euphytica 167:173–179. doi:10.1007/s10681-008-9854-7

    Article  Google Scholar 

  • Sybenga J (1983) Rye chromosome nomenclature and homoeology relationships. Workshop Report. Z Pflanzenzuecht 90:297–304

    Google Scholar 

  • Szakács É, Molnár-Láng M (2008) Fluorescent in situ hybridization polymorphism on the 1RS chromosome arms of cultivated Secale cereale species. Cereal Res Commun 36:247–255. doi:10.1556/CRC.36.2008.2.5

    Article  Google Scholar 

  • Tang ZX, Ross K, Ren ZL, Yang ZJ, Zhang HY, Chikmawati T et al. (2011a) Wealth of wild species: role in plant genome elucidation and improvement. In: Kole C (ed) Wild Crop Relatives: Genomic and Breeding Resources Cereals, Heidelberg, Dordrecht, London, New York, Springer, p 367–395

    Chapter  Google Scholar 

  • Tang Z-X, Fu S-L, Ren Z-L et al (2011b) Diversity and evolution of four dispersed repetitive DNA sequences in the genus Secale. Genome 54:285–300. doi:10.1139/g10-118

    Article  CAS  PubMed  Google Scholar 

  • Vrána J, Kubaláková M, Simková H et al (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041

    PubMed  PubMed Central  Google Scholar 

  • Zeller FJ (1977) Evidence for a 1R/3R translocation in the Kharkov/Dakold wheat-rye addition set. Can J Genet Cytol 19:745–748. doi:10.1139/g77-081

    Article  Google Scholar 

  • Zeller FJ, Fuch E (1983) Cytologie und Krankheitsresistenz einer 1A/1R und mehrerer 1B/1R Weizen-Roggen Translokationssorten. Z Pflanzenzüchtung 90:285–296

    Google Scholar 

Download references

Acknowledgments

This work was financed by the Hungarian National Scientific Research Fund (OTKA–No. K104382). Dietary fibre measurements were supported by OTKA 112169 project. The authors are grateful to I. Molnár for his advice regarding molecular marker analysis. The authors thank the colleagues working in the Wheat Quality Laboratory to measure the quality parameters. The technical assistance of F. Tóth, J. Bucsi and the Organic Breeding Team is gratefully acknowledged. Thanks are due to A. Bacskovszky for revising the manuscript linguistically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éva Szakács.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by M. E. Sorrells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, A., Rakszegi, M., Molnár-Láng, M. et al. Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theor Appl Genet 129, 1045–1059 (2016). https://doi.org/10.1007/s00122-016-2682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2682-6

Keywords

Navigation