Skip to main content
Log in

Characterization of ω-secalin genes from rye, triticale, and a wheat 1BL/1RS translocation line

  • Original article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Sixty-two DNA sequences for the coding regions of omega-secalin (ω-secalin) genes have been characterized from rye (Secale cereale L.), hexaploid and octoploid triticale (×Triticosecale Wittmack), and wheat (Triticum aestivum L.) 1BL/1RS translocation line. Only 19 out of the 62 ω-secalin gene sequences were full-length open reading frames (ORFs), which can be expressed into functional proteins. The other 43 DNA sequences were pseudogenes, as their ORFs were interrupted by one or a few stop codons or frameshift mutations. The 19 ω-secalin genes have a typical primary structure, which is different from wheat gliadins. There was no cysteine residue in ω-secalin proteins, and the potential celiac disease (CD) toxic epitope (PQQP) was identified to appear frequently in the repetitive domains. The ω-secalin genes from various cereal species shared high homology in their gene sequences. The ω-secalin gene family has involved fewer variations after the integration of the rye R chromosome or whole genome into the wheat or triticale genome. The higher Ka/Ks ratio (i.e. non-synonymous to synonymous substitutions per site) in ω-secalin pseudogenes than in ω-secalin ORFs indicate that the pseudogenes may be subject to a reduced selection pressure. Based on the conserved sequences of ω-secalin genes, it will be possible to manipulate the expression of this gene family in rye, triticale, or wheat 1BL/1RS translocation lines, to reduce its negative effects on grain quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson OD, Greene FC, 1989. The characterization and comparative analysis of high-molecular-weight glutenin genes from genomes A and B of a hexaploid bread wheat. Theor Appl Genet 77: 697–700.

    Article  Google Scholar 

  • Burnett CJ, Lorenz KJ, Carver BF, 1995. Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour. Euphytica 86: 159–166.

    Google Scholar 

  • Chai JF, Liu X, Jia JZ, 2005. Homologous cloning of ω-secalin gene family in a wheat 1BL/1RS translocation. Cell Res 15: 658–664.

    Article  CAS  PubMed  Google Scholar 

  • Chen FG, Xu CH, Chen MZ, Wang YH, Xia GM, 2009. A new ω-gliadin gene family for wheat breeding: somatic introgression line 11–12 derived fromTriticum aestivum and Agropyron elongatum. Mol Breeding 22: 675–685.

    Article  CAS  Google Scholar 

  • Clarke BC, Appels R, 1999. Sequence variation at the Sec-1 locus of rye,Secale cereale (Poaceae). Plant Syst Evol 214: 1–14.

    Article  Google Scholar 

  • Clarke BC, Mukai Y, Appels R, 1996. The Sec-1 locus on the short arm of chromosome 1R of rye (Secale cereale). Chromosoma 105: 269–275.

    CAS  PubMed  Google Scholar 

  • Dhaliwal A, Mares D, Marshall D, 1990. Measurement of dough surface stickiness associated with the 1B/1R chromosome translocation in bread wheat. J Cereal Sci 12: 165–175.

    Article  Google Scholar 

  • Herpen TWJM, Goryunova SV, Schoot J, Mitreva M, Salentijn E, Vorst O, et al. 2006. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7: 1.

    Article  PubMed  CAS  Google Scholar 

  • Horlein A, Valentine J, 1995. Triticale (Triticosecale). In: Williams JT, ed. Cereals and pseudocereals. Chapman and Hall, New York: 187–221.

    Google Scholar 

  • Hull GA, Halford NG, Kreis M, Shewry PR, 1991. Isolation and characterization of genes encoding rye prolamins containing a highly repetitive sequence motif. Plant Mol Biol 17: 1111–1115.

    Article  CAS  PubMed  Google Scholar 

  • Jos J, Charbonnier L, Mossé J, Olives JP, 1982. The toxic fraction of gliadin digests in coeliac disease. Isolation by chromatography. Clin Chim Acta 119: 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Kasarda DD, Autra JC, Lew EJL, Nimmo CC, Shewry PR, 1983. N-terminal amino acid sequences of ω-gliadin and ů-secalin implications for the evolution of prolamin genes. Biochem Biophys Acta 747: 138–150.

    Article  CAS  Google Scholar 

  • Lee JH, Graybosch RA, Peterson CJ, 1995. Quality and biochemical effects of a 1RS/1BL wheat-rye translocation in wheat. Theor Appl Genet 90: 105–112.

    Article  CAS  Google Scholar 

  • Liu SW, Gao X, Xia GM, 2008. Characterizing HMW-GS alleles of decaploid Agropyron elongatum in relation to evolution and wheat breeding. Theor Appl Genet 116: 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Murray M, Thompson WF, 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321–4325.

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Gojobori T, 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426.

    CAS  PubMed  Google Scholar 

  • Qi PF, Wei YM, Ouellet T, Chen Q, Tan X, Zheng YL, 2009. The γ-gliadin multigene family in common wheat (Triticum aestivum) and its closely related species. BMC Genomics 10: 168.

    Article  PubMed  CAS  Google Scholar 

  • Ramu C, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD, 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 13: 3497–3500.

    Google Scholar 

  • Rozas J, Sanchez-DelBarrio J, Messeguer X, Rozas R, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  • Samy G, Cécile B, Geert K, Peter S, 2008. Effect of the 1BL/1RS translocation and the Glu-B3 variation on fifteen quality tests in a doubled haploid population of wheat (Triticum aestivum L.). J Cereal Sci 48: 598–603.

    Article  CAS  Google Scholar 

  • Shewry PR, Parrner S, Miflin BJ, 1983. Extraction, separation, and polymorphism of the prolamin storage proteins (secalins) of rye. Cereal Chem 60: 1–6.

    CAS  Google Scholar 

  • Shewry PR, Tatham AS, 1997. Disulphide bonds in wheat gluten proteins. J Cereal Sci 25: 135–146.

    Article  Google Scholar 

  • Singh NK, Shepherd KW, Cornish GB, 1991. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J Cereal Sci 14: 203–208.

    Article  Google Scholar 

  • Smith DB, Flavell RB, 1974. The relatedness and evolution of repeated nucleotide sequences in the genomes of some Gramineacae species. Biochem Genet 12: 243–256.

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S, 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Vader L, Stepniak DT, Bunnik EM, Kooy YM, de Haan W, Drijfhout JW, van Veelen PA, 2003. Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 125: 1105–1113.

    Article  CAS  PubMed  Google Scholar 

  • Vedel F, Lebacq P, Quetier F, 1980. Cytoplasmic DNA variation and relationships in cereal genomes. Theor Appl Genet 58: 219–214.

    Article  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, et al. 2001. Construct design for efficient, effective and high throughput gene silencing in plants. Plant Journal 27: 581–590.

    Article  CAS  PubMed  Google Scholar 

  • Wieser H, Kieffer R, Lelley T, 2000. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. J Sci Food Agr 80: 1640–1647.

    Article  CAS  Google Scholar 

  • Yamamoto M, Mukai Y, 2005. High-resolution physical mapping of the secalin-1 locus of rye on extended DNA fibers. Cytogenet Genome Res 109: 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Zeller FJ, 1973. 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears LMS, ed. Proceedings of the 4th International Wheat Genetics Symposium. University of Missouri, Columbia: 209.

    Google Scholar 

  • Zeller FJ, Hsam SLK, 1983. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In: Sakamoto S (ed) Proceedings of the 6th International Wheat Genetics Symposium. Kyoto University, Kyoto: 161–173.

    Google Scholar 

  • Zhou Y, He ZH, Zhang GS, 2004. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin 30: 531–535. (in Chinese).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y -L. Zheng.

Additional information

These authors contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Q.T., Wei, Y.M., Andre, L. et al. Characterization of ω-secalin genes from rye, triticale, and a wheat 1BL/1RS translocation line. J Appl Genet 51, 403–411 (2010). https://doi.org/10.1007/BF03208870

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03208870

Keywords

Navigation