Skip to main content

Abstract

Rye (Secale spp.) is a member of the Triticeae tribe in the grass family, Poaceae (syn. Gramineae), which also includes wheat (Triticum ssp.) and barley (Hordeum ssp.). Secale is a small but important cereal genus that includes perennial or annual, self-incompatible or self-compatible, and cultivated rye (S. cereale L.), weedy rye, and several wild species. The genus Secale includes four species, consisting of the annual outbreeder S. cereale L., the annual autogamous species, S. sylvestre and S. vavilovii, and the perennial outbreeder S. strictum (syn. S. montanum). A lot of researches on cytology, karyotype, linkage maps, and genome of genus Secale have been done. Several germplasm banks of genus Secale have been formed. Capable of producing higher yields than wheat under adverse conditions, cultivated rye has become a staple food grain in regions unfavorable for growing wheat. The wild and weedy rye species constitute a reserve of genetic diversity that has been underutilized for crop improvement. Secale spp. contain genes associated with high protein content, high lysine, resistance to many cereal diseases, drought, winter hardiness, and other morphological and biochemical traits that can be transferred to closely related cereal crops. Troublesome characteristics of the wild Secale species include small seed size, shattering and pre-harvest sprouting, divergent breeding systems, including both selfing and self-incompatible species, and a range of life cycle habit from annual to short-lived perennial. Challenges to introgression and gene transfer include divergent breeding habits, chromosomal translocations, linkage drag and recalcitrance to somatic cell regeneration. Efforts to conserve and to include the wild species in research and breeding programs have increased in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akgün I, Tosun M (2004) Agricultural and cytological characteristics of M1 perennial rye (Secale montanum Guss.) as effected by the application of different doses of gamma rays. Pak J Biol Sci 7:827–833

    Google Scholar 

  • Akgün I, Tosun M (2007) Seed set and some cytological characters in different generations of autotetraploid perennial rye (Secale montanum Guss). NZ J Agric Res 50:339–346

    Google Scholar 

  • Altpeter F (2006) Rye (Secale cereale L.). In: Wang K (ed) Methods in molecular biology, 2nd edn. Humana, Clifton, USA, pp 223–232

    Google Scholar 

  • Anamthawat-Jónsson K, Heslop-Harrison JS (1993) Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet 240:151–158

    PubMed  Google Scholar 

  • Anamthawat-Jónsson K, Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1990) Discrimination between closely related Triticeae species using genomic DNA as a probe. Theor Appl Genet 79:721–728

    Google Scholar 

  • Anamthawat-Jónsson K, Heslop-Harrison JS, Schwarzacher T (1996) Genomic in situ hybridization for whole chromosomes and genome analysis. In: Clark M (ed) In situ hybridization laboratory companion. Chapman and Hall, London, UK, pp 1–23

    Google Scholar 

  • Andersen MR, Depuit EJ, Abernethy RH, Kleinman LH (1992) Value of mountain rye for suppression of annual bromegrasses on semiarid mined lands. J Range Manag 45:345–351

    Google Scholar 

  • Appels R, McIntyre CL (1985) Cereal genome organization as revealed by molecular probes. Oxf Surv Plant Mol Cell Biol 2:235–252

    CAS  Google Scholar 

  • Appels R, Moran LB, Gustafson JP (1986) Rye heterochromatin. I. Studies on clusters of the major repeating sequence and the identification of a new dispersed repetitive sequence element. Can J Genet Cytol 28:645–657

    CAS  Google Scholar 

  • Bartos B (1993) Chromosome 1R of rye in wheat breeding. Plant Breed 63:1203–1211

    Google Scholar 

  • Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB (1980a) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560

    PubMed  CAS  Google Scholar 

  • Bedbrook JR, O’Dell M, Flavell RB (1980b) Amplification of rearranged repeated DNA sequences in cereal plants. Nature 288:133–137

    CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2003) Plant DNA C-values database. Release 2.0. Available via Royal Botanic Gardens, Kew, UK. http://data.kew.org/cvalues/homepage.html

  • Bennett MD, Gustafon JP, Smith JB (1978) Variation in nuclear DNA in the genus Secale. Chromosoma 61:149–176

    Google Scholar 

  • Börner A, Korzun V (1998) A consensus linkage map of rye (Secale cereale L.) including 374 RFLPs, 24 isozymes and 15 gene loci. Theor Appl Genet 97:1279–1288

    Google Scholar 

  • Bowden WM (1966) Chromosome numbers in seven genera of the tribe Triticeae. Can J Genet Cytol 8:130–137

    Google Scholar 

  • Brink M (2006) Secale cereale L. Record from Protabase. In: Brink M, Belay G (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique Tropicale). Wageningen, Netherlands. http://database.prota.org/search.htm. Accessed 11 Feb 2009

  • Buman RA, Abernethy RH (1988) Temperature requirements for mountain rye, Hycrest crested wheatgrass, and downy brome germination. J Range Manag 41:35–39

    Google Scholar 

  • Buman RA, Monsen SB, Abernethy RH (1988) Seedling competition between mountain rye, ‘Hycrest’ crested wheatgrass, and downy brome. J Range Manag 41:30–34

    Google Scholar 

  • Bushuk W (2001) Rye production and uses worldwide. In: Bushuk W (ed) RYE: production, chemistry, and technology, 2nd edn. American Association of Cereal Chemists, St. Paul, MN, USA, pp 1–11

    Google Scholar 

  • Castillo AM, Vasil V, Vasil IK (1994) Rapid production of fertile transgenic plants of rye (Secale cereale L.). BioTechnology 12:1366–1371

    CAS  Google Scholar 

  • CEPF (2008) Assessing five years of CEPF investment in the succulent Karoo biodiversity hotspot, November 2008. Available via Critical Ecosystem Partnership Fund (CEPF). http://www.cepf.net/where_we_work/regions/africa/succulent_karoo/Pages/default.aspx. Accessed 3 Mar 2009

  • CGRIS (2009) Chinese Crop Germplasm Resources Information Network. http://www.icgr.caas.net.cn. Accessed 13 Apr 2009

  • Chai JF, Zhou RH, Jia JZ, Liu X (2006) Development and application of a new codominant PCR marker for dectecting 1BL.1RS wheat-rye chromosome translocations. Plant Breed 125:302–304

    CAS  Google Scholar 

  • Chapman V, Miller TE (1978) Alien chromosome additions and substitution lines. In: Plant Breeding Institute (ed) Annual report of the plant breeding institite. Plant Breeding Institite, Cambridge, UK, pp 124–125

    Google Scholar 

  • Chikmawati T (2003) Relationships in Secale and PCR-based EST mapping in wheat. Unpublished Doctoral Dissertation, University of Missouri, Columbia, MO, USA

    Google Scholar 

  • Chikmawati T, Schovmond B, Gustafson JP (2005) Phylogenetic relatioships in Secale revealed by amplified fragment length polymorphism. Genome 48:792–801

    PubMed  CAS  Google Scholar 

  • Cox TS, Bender M, Picone C, Van Tassel DL, Holland JB, Brummer EC, Zoeller BE, Paterson AH, Jackson W (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21:59–91

    Google Scholar 

  • Cuadrado A, Jouve N (1995) Fluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequences in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments. Genome 38:796–802

    Google Scholar 

  • Cuadrado A, Jouve N (1997) Distribution of highly repeated DNA sequences in species of the genus Secale. Genome 40:309–317

    PubMed  CAS  Google Scholar 

  • Cuadrado A, Jouve N (2002) Evolutionary trends of different repetititve DNA sequences during speciation in the genus Secale. J Hered 93:339–345

    PubMed  CAS  Google Scholar 

  • Culvenor RA, Oram RN, de St F, Groth C (1985) Variation of tolerance in Phalarisaquatica L. and related species to aluminium in nutrient solution and soil. Aust J Agric Res 36:383–395

    Google Scholar 

  • Davies MJ, Bowey EA, Adlercreutz H, Rowland IR, Rumsby PC (1999) Effects of soy or rye supplementation of high-fat diets on colon tumour development in azoxymethane-treated rats. Carcinogenesis 20:927–931

    PubMed  CAS  Google Scholar 

  • De Bustos A, Jouve N (2002) Phylogenetic relationships of the genus Secale based on the characterization of rDNA ITS sequences. Plant Syst Evol 235:147–154

    Google Scholar 

  • de Froidmont D (1998) A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR. J Cereal Sci 27:229–232

    Google Scholar 

  • De la Pena A, Lorz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into floral tillers. Nature 325:274–276

    Google Scholar 

  • Dedio W, Kaltsikes PJ, Larter EN (1969) Numerical chemotaxonomy in the genus Secale. Can J Bot 47:1175–1180

    Google Scholar 

  • Del Pozo JC, Figueiras AM, Benito C, de la Pena A (1995) PCR derived molecular markers and phylogenetic relationships in the Secale genus. Biol Plant 37:481–489

    Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Franci HA, Harcour RL (1993) Chromosomal rearrangements in rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    CAS  Google Scholar 

  • DFCI (2008) Rye Gene Index (RyeGI) Release 4.0. Available via Dana-Farber Cancer Institute, Computational Biology and Functional Genomics Laboratory, The Gene Index Project. http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=s_cereale. Accessed 21 May 2009

  • Dlusskaya E, Jänsch A, Schwab C, Gänzle MG (2008) Microbial and chemical analysis of a kvass fermentation. Eur Food Res Technol 227:261–266

    CAS  Google Scholar 

  • Eadie MJ (2004) Ergot of rye-the first specific for migraine. J Clin Neurosci 11(1):4–7

    PubMed  CAS  Google Scholar 

  • ECP/GR (2008) Secale database. Available via European Cooperative Program for Crop Genetic Resources Network: http://www.ihar.edu.pl/gene_bank/secale/secale.html. Accessed 23 Feb 2009

  • Endo TR (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J Hered 79:366–370

    Google Scholar 

  • Fageria NK (1992) Maximizing crop yields. CRC, New York, USA, 274 p

    Google Scholar 

  • FAOSTAT (2004) Food and agriculture organization of the United Nations production: crops. http://faostat.fao.org/site/567/default.aspx#ancor

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269

    PubMed  CAS  Google Scholar 

  • Fleinghaus T, Deimling S, Geiger HH (1991) Methodical improvements in rye anther culture. Plant Cell Rep 10:397–400

    Google Scholar 

  • Fomsgaard IS, Mortensen AG, Carlsen SCK (2004) Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals – a review. Chemosphere 54:1025–1038

    PubMed  CAS  Google Scholar 

  • Francki MG (2001) Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44:266–274

    PubMed  CAS  Google Scholar 

  • Frederiksen S, Petersen G (1997) Morphometrical analyses of Secale (Triticeae, Poaceae). Nord J Bot 17:185–197

    Google Scholar 

  • Frederiksen S, Petersen G (1998) A taxonomic revision of Secale. Nord J Bot 18:399–420

    Google Scholar 

  • Friebe B, Hatchett JH, Sears RG, Gill BS (1990) Transfer of Hessian fly resistance from ‘Chaupon' rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor Appl Genet 79:385–389

    Google Scholar 

  • Friebe B, Gill BS, Tuleen NA, Cox TS (1995a) Registration of KS93WGRC28 powdery mildew resistant T6BS.6RL wheat germplasm. Crop Sci 35:1237

    Google Scholar 

  • Friebe B, Zhang W, Raupp JW, Gill BS, Porter DR (1995b) Non-homoeologous wheat-rye chromosomal translocations conferring resistance to greenbug. Euphytica 84:121–125

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests. Euphytica 91:59–87

    Google Scholar 

  • Füle L, Galli Z, Kotvics G, Heszky L (2004) Forage quality of ‘Perenne’, a new perennial rye variety (Secale cereale × Secale montanum). In: Vollmann J, Grausgruber H, Ruckenbauer P (eds) Genetic variation for plant breeding. 2004 EUCARPIA and BOKU, University of Natural Resources and Applied Life Sciences, Vienna, Austria, pp 435–438

    Google Scholar 

  • Füle L, Hódos-Kotvics G, Galli Z, Ács E, Heszky L (2005) Grain quality and baking value of perennial rye (cv. ‘Perenne’) of interspecific origin (Secale cereale × S. montanum). Cereal Res Commun 33:809–816

    Google Scholar 

  • Gellrich C, Schieberle P, Wieser H (2003) Biochemical characterization and quantification of storage protein (Secalin) types in rye flour. Cereal Chem 80:102–109

    CAS  Google Scholar 

  • GrainGenes (2008) A database for Triticeae and Avena Version 2.0. http://wheat.pw.usda.gov/GG2/index.shtml. Accessed 7 May 2009

  • GRAMENE (2009) Genetic diversity Database Version 29. http://www.gramene.org/db/searches/webform/germplasm_search. Accessed 7 May 2009

  • Graybosch RA (2001) Uneasy unions: quality effects of rye chromatin transfers to wheat. J Cereal Sci 33:3–16

    CAS  Google Scholar 

  • GRIN (2008) Germplasm Resources Information Network of the US Department of Agriculture, Agricultural Research Service Version March 2008. http://www.ars-grin.gov/ (cited 20 Feb 2009)

  • Gupta RB, Singh NK, Shepherd KW (1989) The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor Appl Genet 77:57–64

    CAS  Google Scholar 

  • Gustafson JP, Evans E, Josifek K (1976) Identification of chromosomes in Secale montanum and individual S. montanum chromosome additions to ‘Kharkov’ wheat by herochromatin bands and chromosome morphology. Can J Genet Cytol 18:339–343

    Google Scholar 

  • Gustafson JP, Ma XF, Korzun V, Snape JW (2009) A consensus map of rye integrating mapping data from five mapping populations. Theor Appl Genet 118:793–800

    PubMed  Google Scholar 

  • Hajiboland R (2007) Uptake, transport, re-translocation and chelation of Ni in one tolerant and one susceptible Graminaceous species. Pak J Biol Sci 10(7):1011–1019

    PubMed  CAS  Google Scholar 

  • Hajiboland R, Manafi MH (2007) Flora of heavy metal-rich soils in NW Iran and somepotential hyper-accumulator and accumulator species. Acta Bot Croat 66(2):177–195

    CAS  Google Scholar 

  • Hammer K (1990) Breeding system and phylogenetic relationships in Secale L. Biol Zbl 109:45–50

    Google Scholar 

  • Hammer K (2004) Resolving the challenge posed by agrobiodiversity and plant genetic resources – an attempt. www.upress.uni-kassel.de/online/frei/978-3-89958-056-3.volltext.frei.pdf. Accessed 1 May 2009

  • Hedge SG, Waines JG (2004) Hybridization and introgression between bread wheat and wild and weedy relatives. Crop Sci 44:1145–1155

    Google Scholar 

  • Herzfeld JCP (2002) Development of a genetic transformation protocol for rye (Secale cereale L.) and characterisation of transgene expression after biolistic or Agrobacterium-mediated gene transfer. PhD Thesis, Martin Luther University, Halle-Wittenberg, Germany. http://sundoc.bibliothek.uni-halle.de/diss-online/02/02H059/of_index.htm. Accessed 18 May 2009

  • Hillman G (1978) On the origins of domestic rye: the finds from Aceramic Can Hassan III in Turkey. Anatolian Stud 28:157–174

    Google Scholar 

  • Hillman G, Hedges R, Moore A, Colledge S, Pettitt P (2001) New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates. Holocene 11:383

    Google Scholar 

  • Hoare DB (2003) Secale africanum Stapf. FAO Grassland Index. http://www.fao.org/ag/AGP/agpc/doc/GBASE/Safricadata/secafr.htm [http://www.fao.org/ag/AGP/agpc/doc/GBASE/Default.htm]. Accessed 3 Mar 2009

  • Hon WC, Griffith MG, Chong P, Yang DSC (1994) Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol 104:971–980

    PubMed  CAS  Google Scholar 

  • Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DSC (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol 109:879–889

    PubMed  CAS  Google Scholar 

  • Hull GA, Halford NG, Kreis M, Shewry PR (1991) Isolation and characterization of genes encoding rye prolamins containing a highly repetitivesequence motif. Plant Mol Biol 17:1111–1115

    PubMed  CAS  Google Scholar 

  • IPK Gatersleben (2006) The Gene Bank information system of the Leibniz Institute of Plant Genetics and Crop Plant Research. http://gbis.ipk-gatersleben.de/gbis_i/. Accessed 16 Jun 2009

  • Isik Z, Parmaksiz I, Coruh C, Gevlan-Su YS, Cebeci O, Beecher B, Budak H (2007) Organellar genome analysis of rye (secale cereale) representing diverse geographic regions. Genome 50:724–734

    PubMed  CAS  Google Scholar 

  • ITEC (2007) International Triticeae EST Cooperative. http://wheat.pw.usda.gov/genome/. Accessed 2 Mar 2009

  • Jaaska V (1983) Secale and Triticale. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding. Elsevier, Amsterdam, The Netherlands, pp 79–101

    Google Scholar 

  • Jaaska V (1999) On the origin and in statu nascendi domesticaton of rye and barley: a review. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication, Part 4: Domestication of crop plants. Proceedings of Harlan symposium, 10–14 May 1997, IPGRI, Aleppo, Syria

    Google Scholar 

  • Jain SK (1960) Cytogenetics of rye (Secale spp). Bibliogr Genet 19:1–86

    Google Scholar 

  • Jauhar PP, Chibbar RN (1999) Chromosome-mediated and direct gene transfers in wheat. Genome 42:570–583

    CAS  Google Scholar 

  • Jia J, Yang Z, Li G, Liu C, Lei M, Zhang T, Zhou J, Ren Z (2009) Isolation and chromosomal distribution of a novel Ty1-copia-like sequence from Secale, which enables identification of wheat–Secale africanum introgression lines. J Appl Genet 50:25–28

    PubMed  CAS  Google Scholar 

  • Jiang JM, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Google Scholar 

  • Jouve N, Soler C (1996) Triticale genomic and chromosomes’ history. In: Guedes-Pinto H, Darvey N, Carnide VP (eds) Triticale: today and tomorrow. Kluwer, Netherlands, pp 91–118

    Google Scholar 

  • Kariluoto S, Liukkonen KH, Myllymäki O, Vahteristo L, Kaukovirta-Norja A, Piironen V (2006) Effect of germination and thermal treatments on folates in rye. J Agric Food Chem 54:9522–9528

    PubMed  CAS  Google Scholar 

  • Katto MC, Endo TR, Nasuda S (2004) A PCR-based marker for targeting small rye segments in wheat background. Genes Genet Syst 79:245–250

    PubMed  CAS  Google Scholar 

  • Khush GS (1962) Cytogenetic and evolutionary studies in Secale. II. Interrelationships of the wild species. Evolution 16:484–496

    Google Scholar 

  • Khush GS (1963) Cytogenetic and evolutionary studies in Secale. III. Cytogenetics of weedy ryes and origin of cultivated rye. Econ Bot 17:60–71

    Google Scholar 

  • Khush GS, Stebbins GL (1961) Cytogenetic and evolutionary studies in Secale. I. Some new data on the ancestry of S. cereale. Am J Bot 48:723–730

    Google Scholar 

  • Kim W, Johnson JW, Baenziger PS, Lukaszewski AJ, Gaines CS (2004) Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci 44:1254–1258

    Google Scholar 

  • Ko JM, Seo BB, Suh DY, Do GS, Park DS, Kwack YH (2002) Production of a new wheat line possessing the 1BL.1RS wheat-ryetranslocation derived from Korean rye cultivar Paldanghomil. Theor Appl Genet 104:171–176

    PubMed  Google Scholar 

  • Kofler R, Bartoš J, Gong L, Stift G, Suchánková H, Berenyi M, Burg K, Doležel J, Lelley T (2008) Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1. Thoer Appl Genet 117:915–926

    CAS  Google Scholar 

  • Kozubek A, Tyman JHP (1999) Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev 99:1–25

    PubMed  CAS  Google Scholar 

  • Kubiczek R, Zuczak W, Molski B (1981) Protein resources of the wild Secale species. Kulturpflanze 29:159–167

    CAS  Google Scholar 

  • Landjeva S, Korzun V, Tsanev V, Vladova R, Ganeva G (2006) Distribution of the wheat-rye translocation 1RS.1BL among bread wheat varieties of Bulgaria. Plant Breed 125:102–104

    CAS  Google Scholar 

  • Lapinski M (1972) Cytoplasmic-genetic type of male sterility in Secale montanum Guss. Wheat Inf Serv 35:25–28

    Google Scholar 

  • Lapitan NLV, Sears RG, Gill BS (1984) Translocations and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture. Theor Appl Genet 68:547–554

    Google Scholar 

  • Lapitan NLV, Sears RG, Rayburn AL, Gill BS (1986) Wheat-rye translocations: detection of chromosome breakpoints by in situ hybridization with a biotin-labeled DNA probe. J Hered 77:415–419

    Google Scholar 

  • Lázaro R, Latorre MA, Medel P, Gracia M, Mateos GG (2004) Feeding regimen and enzyme supplementation to rye-based diets for broilers. Poult Sci 83:152–160

    PubMed  Google Scholar 

  • Leach RC, Dundas IS, Houben A (2006) Construction of comparative genetic maps of two 4Bs.4Bl-5Rl translocations in bread wheat (Triticum aestivum L.). Genome 49:729–734

    PubMed  CAS  Google Scholar 

  • Lee JH, Ma Y, Wako T, Li LC, Kim KY, Park SW, Uchiyama S, Fukui K (2004) Flow karyotypes and chromosomal DNA contents of genus Triticum species and rye (Secale cereale). Chrom Res 12:93–102

    PubMed  CAS  Google Scholar 

  • Leinonen KS, Poutanen KS, Mykkänen HM (2000) Rye bread decreases serum total and LDL cholesterol in men with moderately elevated serum cholesterol. J Nutr 130:164–170

    PubMed  CAS  Google Scholar 

  • Li ZF, Xia XC, Zhou XC, Niu YC, He ZH, Zhang Y, Li GQ, Wan AM, Wang DS, Chen XM, Lu QL, Singh R (2006) Seedling and slow rusting resistance to stripe rust in Chinese common wheats. Plant Dis 90:1302–1312

    Google Scholar 

  • Linde-Laursen I, von Bothmer R, Jacobson N (1980) Giemsa C-banding in Asiatic taxa of Hordeum sect. Stenostachys with notes on chromosome morphology. Hereditas 93:235–254

    Google Scholar 

  • Linko AM, Juntunen KS, Mykkanen HM, Adlercreutz H (2005) Whole-grain rye bread consumption by women correlates with plasma alkylresorcinols and increases their concentration compared with low-fiber wheat bread. J Nutr 135:580–583

    PubMed  CAS  Google Scholar 

  • Liu C, Yang ZJ, Li GR, Zeng ZX, Zhang Y, Zhou JP, Liu ZH, Ren ZL (2008) Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica 159:249–258

    CAS  Google Scholar 

  • Lorenz KJ (1991) Rye. In: Lorenz KJ, Kulp K (eds) Handbook of cereal science and technology. Marcel Dekker, New York, USA, pp 331–371

    Google Scholar 

  • Lukaszewski AJ (1990) Frequency of 1RS.1AL and 1RS.1BL translocations in United States wheats. Crop Sci 30:1151–1153

    Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225

    CAS  Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1982) Transmission of chromosomes through the eggs and pollen of triticale × wheat F1 hybrids. Theor Appl Genet 63:49–55

    Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1983) Translocations and modifications of chromosomes in triticale × wheat hybrids. Theor Appl Genet 64:239–248

    Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1987) Cytogenetics of triticale. In: Janick J (ed) Plant breeding reviews, vol 5. AVI, New York, USA, pp 41–93

    Google Scholar 

  • Lukaszewski AJ, Porter DR, Baker CA, Rybka K, Lapinski B (2001) Attempts to transfer Russian wheat aphid resistance from a rye chromosome in Russian triticales to wheat. Crop Sci 41:1743–1749

    Google Scholar 

  • Lukaszewski AJ, Lapinski B, Rybka K (2005) Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenet Genome Res 109:373–377

    PubMed  CAS  Google Scholar 

  • Ma R, Yli-Mattila T, Pulli S (2004) Phylogenetic relationships among genotypes of worldwide collection of spring and winter ryes (Secale cereale L.) determined by RAPD-PCR markers. Hereditas 140:210–221

    PubMed  Google Scholar 

  • MacDonald R, Ishani A, Rutks I, Wilt TJ (2000) A systematic review of Cernilton for the treatment of benign prostatic hyperplasia. Brit J Urol Int 85:836–841

    CAS  Google Scholar 

  • Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 104:1317–1324

    PubMed  CAS  Google Scholar 

  • Mater Y, Baenziger S, Gill K, Graybosch R, Whitcher L, Baker C, Specht J, Dweikat I (2004) Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from ‘Amigo’ and ‘Kavkaz’ wheat–rye translocations of chromosome 1RS.1AL. Genome 47:292–298

    PubMed  CAS  Google Scholar 

  • McKendry AL, Tague DN, Miskin KE (1996) Effect of 1BL.1RS on agronomic performance of soft red winter wheat. Crop Sci 36:844–847

    Google Scholar 

  • Meier S, Kunzmann R, Zeller FJ (1996) Genetic variation in germplasm accessions of Secale vavilovii Grossh. Genet Resour Crop Evol 43:91–96

    Google Scholar 

  • Miller TE (1973) Alien chromosome additions and substitutions. In: Annual Report of Plant Breeding Institute. Plant Breeding Institute, Cambridge, UK, p 143

    Google Scholar 

  • Miller TE (1984) The homoeologous relationship between the chromosomes of rye and wheat. Current status. Can J Genet Cytol 26:578–589

    Google Scholar 

  • Miller TE, Reader SM, Purdie KA, King IP (1994) Determination of the frequency of wheat-rye chromosome pairing in wheat × rye hybrids with and without chromosome 5B. Theor Appl Genet 89:255–258

    Google Scholar 

  • Molski BA, Kubiczek R, Puchalski J (1981) Rye genetic resources evaluation in the Botanical Garden of the Polish Academy of Sciences in Warsaw. Genet Resour Crop Evol 29:129–136

    Google Scholar 

  • Molski BA, Luckzak W, Zych J (1985) Protein quantity and quality in rye collections and in agricultural production in Poland. In: EUCARPIA meeting of the cereal section on rye svalof, Sweden, pp 491–523

    Google Scholar 

  • Montero M, Sanz J, Jouve N (1986) Meiotic pairing and alpha-amylase phenotype in a 5B/5Rm Triticum aestivum-Secale montanum translocation line in common wheat. Theor Appl Genet 73:122–128

    CAS  Google Scholar 

  • Moreno-Sevilla B, Baenziger PS, Shelton DR, Graybosch RA, Peterson CJ (1995) Agronomic performance and end-use quality of 1B vs. 1BL/1RS genotypes derived from winter wheat ‘Rawhide’. Crop Sci 35:1607–1612

    Google Scholar 

  • Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95

    Google Scholar 

  • Nejad AM, Nasuda S, McIntosh RA, Endo TR (2002) Transfer of rye chromosome segments to wheat by a gametocidal system. Chrom Res 10:349–357

    Google Scholar 

  • NGB/SESTO (2007) Nordic Gene Bank Database: Seed Storage Gene Bank Documentation System. http://www.nordgen.org/index.php/en/Vaexter/Innehaall/Sesto. Accessed 2 May 2009

  • Nilsson M, Åman P, Härkönen H, Hallmans G, Bach Knudsen KE, Mazur W, Adlercreutz H (1997) Content of nutrients and lignans in roller-milled fractions of rye. J Sci Food Agric 73:143–148

    CAS  Google Scholar 

  • Nkongolo KK, Lapitan NLV, Quick JS (1996) Genetic and cytogenetic analyses of Russian wheat aphid resistance in triticale × wheat hybrids and progenies. Crop Sci 36:1114–1119

    Google Scholar 

  • Nkongolo KK, Haley SD, Kim NS, Michael P, Fedak G, Quick JS, Peairs FB (2009) Molecular cytogenetic and agronomic characterization of advanced generations of wheat × triticale hybrids resistant to Diuraphis noxia (Mordvilko): application of GISH and microsatellite markers. Genome 52:353–360

    PubMed  CAS  Google Scholar 

  • Nyström L, Lampi AM, Andersson AA, Kamal-Eldin A, Gebruers K, Courtin CM, Delcour JA, Li L, Ward JL, Fraś A, Boros D, Rakszegi M, Bedo Z, Shewry PR, Piironen V (2008) Phytochemicals and dietary fiber components in rye varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9758–9766

    PubMed  Google Scholar 

  • Okamoto M (1957) Asynaptic effect of chromosome V. Wheat Inf Serv 5:6–7

    Google Scholar 

  • Oram RN (1996) Secale montanum – a wider role in Australia? NZ J Agric Res 39:629–633

    Google Scholar 

  • Persson K, Bothmer RV (2000) Assessing the allozyme variation in cultivars and Swedish landraces of rye (Secale cereale L.). Hereditas 132:7–17

    PubMed  CAS  Google Scholar 

  • Persson K, Bothmer RV (2002) Genetic diversity amongst landraces of rye (Secale cereale L.) from northern Europe. Hereditas 136:29–38

    PubMed  Google Scholar 

  • Petersen G (1991) Intergeneric hybridization between Hordeum and Secale. II. Analysis of meiosis in hybrids. Hereditas 114:141–159

    Google Scholar 

  • Petersen G, Seberg O, Aagesen L, Frederiksen S (2004) An empirical test of the treatment of indels during optimization alignment based on the phylogeny of the genus Secale (Poaceae). Mol Phylogenet Evol 30:733–742

    PubMed  CAS  Google Scholar 

  • Pomeranz Y, Standridge NN, Schreck JJ, Goplin ED (1973) Rye in malting and brewing. Crop Sci 13:213–215

    Google Scholar 

  • Popelka JC, Altpeter F (2003) Evaluation of rye (Secale cereale L.) inbred lines and their crosses for tissue culture response and stable genetic transformation of homozygous rye inbred line L22 by biolistic gene transfer. Theor Appl Genet 107(4):583–590

    PubMed  CAS  Google Scholar 

  • Popelka JC, Xu JP, Altpeter F (2003) Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and production of instantly marker-free transgenic rye. Transgenic Res 12:587–596

    PubMed  CAS  Google Scholar 

  • Puchalski J, Molski B (1981) Isoenzyme variation within the wild Secale L. Species. Kulturpflanze 29:391–399

    CAS  Google Scholar 

  • Rabinovich SV (1998) Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340

    Google Scholar 

  • Rakocyz-Trojanowska M, Malepszy S (1995) Genetic factors influencing the regeneration ability of rye (S. cereale L.). II. Immature embryos. Euphytica 83:233–239

    Google Scholar 

  • Reddy P, Appels R (1989) A second locus for the 5S multigene family in Secale L.: sequence divergence in two lineages of the family. Genome 32:456–467

    CAS  Google Scholar 

  • Reddy P, Appel R, Baum BR (1990) Ribosomal DNA spacer-length variation in Secale spp. (Poaceae). Plant Syst Evol 171:205–220

    CAS  Google Scholar 

  • Reimann-Philipp R (1986) Perennial spring rye as a crop alternative. J Agron Crop Sci 157(4):281–285

    Google Scholar 

  • Ren ZL, Zhang HQ (1997) Induction of small-segment- translocation between wheat and rye chromosomes. Sci China 40:323–331

    CAS  Google Scholar 

  • Ren ZL, Lelley T, Röbbelen G (1990a) The use of monosomic rye addition lines for transferring rye chromatin into bread wheat: I. The occurrence of translocations. Plant Breed 105:257–264

    Google Scholar 

  • Ren ZL, Lelley T, Röbbelen G (1990b) The use of monosomic rye addition lines for transferring rye chromatin into bread wheat. II. Breeding value of homozygous wheat/rye translocation. Plant Breed 105:265–270

    Google Scholar 

  • Ribeiro-Carvalho C, Guedes-Pinto H, Heslop-Harrison JS, Schwarzacher T (2001) Introgression of rye chromatin on chromosome 2D in the Portuguese wheat landrace ‘Barbela’. Genome 44:1122–1128

    PubMed  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Google Scholar 

  • Riley R, Chapman V, Johnson R (1968) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res 12(2):199–219

    Google Scholar 

  • Rimpau J, Smith DB, Flavell RB (1978) Sequence organisation analysis of the wheat and rye genomes by interspecies DNA/DNA hybridization. J Mol Biol 123:327–359

    PubMed  CAS  Google Scholar 

  • Ross AB, Kamal-Eldin A, Jung C, Shepherd MJ, Åman P (2001) Gas chromatographic analysis of alkylresorcinols in rye grains (Secale cereale L.). J Sci Food Agric 81:1405–1411

    CAS  Google Scholar 

  • Rybczyński JJ (1990) Plant tissue culture of Secale taxa. Euphytica 46:57–70

    Google Scholar 

  • Rybczyński JJ, Zduńczyk W (1986) Somatic embryogenesis and plantlet regeneration of Secale genus. I. Somatic embryogenesis and organogenesis from cultured immmature embryos of five wild species of rye. Theor Appl Genet 73:267–271

    Google Scholar 

  • Schlegel R (1997) Current list of wheats with rye introgression of homoelogous group 1, 2nd update. Wheat Inf Serv 84:64–69

    Google Scholar 

  • Schlegel R, Korzun V (1997) About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breed 116:537–540

    Google Scholar 

  • Schlegel R, Korzun V (2009) Gene map: genes, markers, and linkage data of rye, version 01.09. http://www.desicca.de/Rye%20gene%20map/index.html. Accessed 21 May 2009

  • Schlegel R, Meinel A (1994) A quantitative trait locus (QTL) on chromosome arm 1RS of rye and its effect on yield performance of hexaploid wheats. Cereal Res Commun 22:7–13

    Google Scholar 

  • Schlegel R, Weryszko E (1979) Intergeneric chromosome pairing in different wheat-rye hybrids revealed by the Giemsa-banding technique and some implications on karyotype evolution in the genus Secale. Biol Zbl 98:399–407

    Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22

    Google Scholar 

  • Sears ER (1972) Chromosome engineering in wheat. Stadler Genet Symp 4:23–28

    Google Scholar 

  • Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans LT, Peacock WJ, Frankel OH (eds) Wheat science – today and tomorrow. Cambridge University Press, Cambridge, UK, pp 75–89

    Google Scholar 

  • Sears ER, Okamoto M (1958) Intergenomic chromosome relationship in hexaploid wheat. In: Proceedings of 10th international congress on genetics, Montreal, Canada, pp 258–259

    Google Scholar 

  • Sencer HA, Hawkes JG (1980) On the origin of cultivated rye. Biol J Linn Soc 13:299–313

    Google Scholar 

  • Seo YW, Jang CS, Johnson JW (2001) Development of AFLP and STS markers for identifying wheat-rye translocations possessing 2RL. Euphytica 121:279–287

    CAS  Google Scholar 

  • Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in Celiac sprue. Science 297:2275–2279

    PubMed  CAS  Google Scholar 

  • Shang HY, Wei YM, Long H, Yan ZH, Zheng YL (2005) Identification of LMW glutenin-like genes from Secale sylvestre host. Russ J Genet 41:1372–1380

    CAS  Google Scholar 

  • Shang HY, Wei YM, Wang XR, Zheng YL (2006) Genetic diversity and phylogenetic relationships in the rye genus Secale L. (rye) based on Secale cereale microsatellite markers. Genet Mol Biol 29(4):685–691

    Google Scholar 

  • Shewry PR, Parmar S, Miller TE (1985) Chromosomal location of the structural genes for the 75000 molecular weight gamma secalins in Secale montanum: evidence for a translocation involving chromosomes 2R and 6R in cultivated rye Secale cereale. Heredity 54:381–383

    CAS  Google Scholar 

  • Shi BJ, Gustafson JP, Button J, Miyazaki J, Pallotta M, Gustafson N, Zhou H, Langridge P, Collins NC (2009) Physical analysis of the complex rye (Secale cereale L.) Alt4 aluminium (aluminum) tolerance locus using a whole-genome BAC library of rye cv. Blanco. Theor Appl Genet 119(4):695–704

    PubMed  CAS  Google Scholar 

  • Šimková H, Šafář J, Suchánková P, Kovářová P, Bartoš J, Kubaláková M, Janda J, Číhalíková J, Mago R, Lelley T, Doležel J (2008) A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS). BMC Genomics 9:237–245

    PubMed  Google Scholar 

  • Singh RJ, Röbbelen G (1977) Identification by Giemsa technique of the translocations separating cultivated rye from three wild species of Secale. Chromosoma 59:217–225

    Google Scholar 

  • Stutz HS (1957) A cytogenetic analysis of the hybrid Secale cereale L. × S. montanum Guss. and its progeny. Genetics 42:199–221

    PubMed  CAS  Google Scholar 

  • Stutz HS (1972) On the origin of cultivated rye. Am J Bot 59:59–70

    Google Scholar 

  • Taeb M, Koebner RMD, Forster BP (1993) Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome 36:825–830

    PubMed  CAS  Google Scholar 

  • Tang ZX, Fu SL, Ren ZL, Zhou JP, Yan BJ, Zhang HQ (2008a) Variation of tandem repeat, regulatory element, and promoter regions revealed by wheat-rye amphiploids. Genome 51:399–408

    PubMed  CAS  Google Scholar 

  • Tang ZX, Fu SL, Ren ZL, Zhang HQ, Yang ZJ, Yan BJ, Zhang HY (2008b) Production of a new cultivar with a different 1B.1R translocation with resistance to powdery mildew and stripe rust. Cereal Res Commun 36:451–460

    CAS  Google Scholar 

  • Tropicos Database (2009) Available via Missouri Botanical Garden. http://www.tropicos.org/Name/25551483. Accessed 3 Apr 2009

  • Tfelt-Hansen P, Saxena PR, Dahlö C, Pascual J, LÃinez M, Henry P, Diener HC, Schoenen J, Ferrari MD, Goadsby PJ (2000) Ergotamine in the acute treatment of migraine: a review and European consensus. Brain 123:9–18

    PubMed  Google Scholar 

  • Tsujimoto H, Noda K (1988) Chromosome breakage in wheat induced by the gametocidal gene of Aegilops triuncialis L.: Its utilization for wheat genetics and breeding. In: Miller TE, Koebner RMD (eds) Proceedings of 7th international wheat genetics symposium. IPSR, Cambridge, UK, pp 455–460

    Google Scholar 

  • Vences FJ, Vaquedro F, de la Vega P (1987) Phylogenetic relationships in Secale (Poaceae): an isozymatic study. Plant Syst Evol 157:33–47

    Google Scholar 

  • Villareal RL, Mujeeb-Kazi A, Rajaram S, Toro ED (1994) Associated effects of chromosome 1B/1R translocation on agronomic traits in hexaploid wheat. Breed Sci 44:7–11

    Google Scholar 

  • Villareal RL, Banuelos O, Mujeeb-Kazi A, Rajaram S (1998) Agronomic performance of chromosome 1B and T1BL.1RS near isolines in the spring bread wheat Seri M82. Euphytica 103:195–202

    Google Scholar 

  • Wang RRC (1989) An assessment of genome analysis based on chromosome pairing in hybrids of perennial Triticeae. Genome 32:179–189

    Google Scholar 

  • Wang RRC (1992) New intergeneric diploid hybrids among Agropyron, Thinopyrum, Pseudoroegneria, Psathyrostachys, Hordeum, and Secale. Genome 35:545–550

    Google Scholar 

  • Wang RR-C, Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M (1996) Genome symbols in the Triticeae (Poaceae). In: Wang RRC, Jensen KB, Jaussi C (eds) Proceedings of 2nd international Triticeae sympsoium, 20–24 June 1994, Utah State University Press, Logan, Utah, USA, pp 29–34

    Google Scholar 

  • Wickens GE (2004) Economic botany. Springer, New York, USA, 170 p

    Google Scholar 

  • Wilson EH (1914) A naturalist in western China, with vasgulum, camera, and gun: being some account of eleven years’ travel, exploration, and observation in the more remote parts of the flowery kingdom, vol 1. Library New York Botanical Garden, Methuen and Co, London, UK, p 58. http://www.archive.org/stream/naturalistinwest01wils/naturalistinwest01wils_djvu.txt. Accessed 24 Mar 2009

  • Yan BJ, Zhang HQ, Ren ZL (2005) Molecular cytogenetic identification of a new 1RS/1BL translocation line with Secalin absence. Hereditas 27:513–517 (in Chinese with English abstract)

    PubMed  CAS  Google Scholar 

  • Yang ZJ, Ren ZL (1997) Expression of gene Pm8 for resistance to powdery mildew in wheat for Sichuan. J Sichuan Agric Univ 15:452–456 (in Chinese with English abstract)

    Google Scholar 

  • Yang ZJ, Li GR, Ren ZL (2000) Identification of amphiploid between Triticum durum cv. Ailanmai native to Sichuan, China and Secale africanum. Wheat Inf Serv 91:20–24

    Google Scholar 

  • Yang ZJ, Li GR, Ren ZL (2001a) Identification of Triticum durum–Secale africanum amphiploid and its crossability with common wheat. J Genet Breed 55:45–50

    Google Scholar 

  • Yang ZJ, Li GR, Jiang HR, Ren ZL (2001b) Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale silvestre. Euphytica 119:317–321

    Google Scholar 

  • Yang ZM, Xie CJ, Sun QX (2003) Situation of the sources of stripe rust resistance of wheat in the post-CY32 era in China. Acta Agron Sin 29:161–168 (in Chinese with English abstract)

    Google Scholar 

  • Yang ZJ, Li GR, Jia JQ, Zeng X, Lei MP, Zeng ZX, Tao Z, Ren ZL (2009) Molecular cytogenetic characterization of wheat–Secale africanum amphiploids and derived introgression lines with stripe rust resistance. Euphytica 167: 197–202

    Google Scholar 

  • Zhang H, Ren ZL (1998) Heterochromatin constitution differentiation in species of Secale genus. J Sichuan Univ 18:420–429 (in Chinese with English abstract)

    Google Scholar 

  • Zhang Y, Mian MAR, Bouton JH (2006) Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Sci 46:497–511

    Google Scholar 

  • Zhou Y, He ZH, Zhang GS, Xia LQ, Chen XM, Gao YC, Jing ZB, Yu GJ (2004) Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin 30:531–535 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zohary D, Hopf M (2000) Cereals. In: Zohary D, Hopf M (eds) Domestication of plants in the old world, 3rd edn. Oxford University Press, New York, USA, pp 70–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. X. Tang .

Editor information

Editors and Affiliations

Appendices

Appendix 1

8.1.1 Rye Genetic Map References by Year of Publication

  • Benito C, Frade JM, Orellana JO, Carrillo JM (1990) Linkage and cytogenetic maps of genes controlling endosperm storage proteins and isozymes in rye (Secale cereale L.). Theor Appl Genet 79:347–352

  • Ren ZL, Lelley T (1990) Chromosomal location of genes in the R-genome causing hybrid necrosis in rye and triticale. Genome 33:40–43

  • Singh NK, Shepherd KW, McIntosh RA (1990) Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R. Theor Appl Genet 80:609–616

  • Benito C, Zaragoza C, Gallego FJ, de la Peña Figueiras AM (1991) A map of rye chromosome 2R using isozyme and morphological markers. Theor Appl Genet 82:112–116

  • Wang ML, Atkinson MD, Chinoy CN, Devos KM, Harcourt RL, Liu CJ, Rogers WJ, Gale MD (1991) RFLP-based genetic map of rye (Secale cereale L.) chromosome 1R. Theor Appl Genet 82:174–178

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebener RMD, Liu CJ, Masojć P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

  • Plaschke J, Börner A, Xie DX, Koebner RMD, Schlegel R, Gale MD (1993) RFLP-mapping of genes affecting plant height and growth habit in rye. Theor Appl Genet 85:1049–1054

  • Philipp U, Wehling P, Wricke G (1994) A linkage map of rye. Theor Appl Genet 88:243–248

  • Plaschke J, Korzun V, Koebner RMD, Börner A (1995) Mapping of the GA3-insensitive dwarfing gene ct1 on chromosome 7R in rye. Plant Breed 114:113116

  • Wanous MK, Gustafson, JP (1995) A genetic map of rye chromosome 1R integrating RFLP and cytogenetic loci. Theor Appl Genet 91:720–726

  • Wanous MK, Goicoechea P, Gustafson JP (1995) RFLP maps of rye chromosomes 6R and 7R including terminal C-bands. Genome 38:999–1004

  • Korzun V, Melz G, Börner A (1996) RFLP mapping of the dwarÞng (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.). Theor Appl Genet 92:1073–1077

  • Loarce Y, Hueros G, Ferrer E (1996) A molecular linkage map of rye. Theor Appl Genet 93:1112–1118

  • Senft P, Wricke G (1996) An extended genetic map of rye (Secale cereale L.). Plant Breed 115:508–510

  • Gallego FJ, Benito C (1997) Genetic control of aluminium tolerance in rye (Secale cereale L.). Theor Appl Genet 95:393–399

  • Korzun V, Malyshev S, Voylokov A, Börner A (1997) RFLP-based mapping of three mutant loci in rye (Secale cereale L.) and their relation to homoeologous loci within the Gramineae. Theor Appl Genet 95:468–473

  • Börner A, Korzun V (1998) A consensus linkage map of rye (Secale cereale L.) including 374 RFLPs, 24 isozymes and 15 gene loci. Theor Appl Genet 97:1279–1288

  • Börner A, Korzun V, Polley A, Malyshev S, Melz G (1998) Genetics and molecular mapping of male fertility restoration locus (Rfg1) in rye (Secale cereale L.). Theor Appl Genet 97:99–102

  • Korzun V, Malyshev S, Kartel N, Westermann T, Weber WE, Börner A (1998) A gnetic linkage map of rye (Secale cereale L.). Thoer Appl Genet 96:203–208

  • Taylor C, Shepherd KW, Langridge P (1998) A molecular genetic map of the long arm of chromosome 6R of rye incorporating the cereal cyst nematode resistance gene, CreR. Theor Appl Genet 97:1000–1012

  • Voylokov AV, Korzun V, Börner A (1998) Mapping of three self-fertility mutations in rye (Secale cereale L.) by using RFLP, isozyme and morphological markers. Theor Appl Genet 97:147153

  • Börner A, Korzun V, Voylokov AV, Weber WE (1999) Detection of quantitative trait loci on chromosome 5R of rye (Secale cereale L.). Theor Appl Genet 98:1087–1090

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

  • Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

  • Ma XF, Wanous MK, Houchins K, Milla MAR, Goicoechea PG, Wang Z, Xie M, Gustafson JP (2001) Molecular linkage mapping in rye (Secale cereale L.). Theor Appl Genet 102:517–523

  • Masojć P, Myśków B, Milczarski P (2001) Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theor Appl Genet 102:1273–1279

  • González C, Camacho MV, Benito C (2002) Chromosomal location of 46 new RAPD markers in rye (Secale cereale L.). Genetica 115:205–211

  • Bednarek PT, Masojć P, Lewandowska R, Myśków B (2003) Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. J Appl Genet 44:21–33

  • Hackauf B, Wehling P (2003) Development of microsatellite markers in rye: map construction. Plant Breed Seed Sci 48:143–151

  • Nagy ED, Lelley T (2003) Genetic and physical mapping of sequence-specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm of rye in a wheat background. Theor Appl Genet 107:1271–1277

  • Khlestkina EK, Than MHM, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Böder A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732

  • Camacho MV, Matos M, Gonzalez C, Perez-Flores V, Pernaute B, Pinto-Carnide O, Benito C (2005) Secale cereale inter-microsatellites (SCIMs): chromosomal location and genetic inheritance. Genetica 123:303–311

  • Liu C, Yang ZJ, Feng J, Zhou JP, Ren ZL (2007) Establishment of a specific PCR marker of 6R chromosome of rye. J Triticeae Crops 27:35–40

  • Milczarski P, Banek-Tabor A, Lebiecka K, Stojałowski S, Myśków B, Masojć P (2007) New genetic map of rye composed of PCR-based molecular markers and its alignment with the reference map of the DS2 × RXL10 intercross. J Appl Genet 48:11–24

  • Masojć p, Banek-Tabor A, Milczarski P, Twardowska M (2007) QTLs for resistance to pre-harvest sprouting in rye (Secale cereale L.). J Appl Genet 48:211–217

  • Hackauf B, Radd S, van der Voort JR, Miedaner T, Wehling P (2009) Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome. Theor Appl Genet 118:371–384

  • Gustafson JP, Ma XF, Korzun V, Snape JW (2009) A consensus map of rye integrating mapping data from five mapping populations. Theor Appl Genet 118:793–800

8.1.2 Consensus Map by Börner and Korzun (1998) from 12 Individual Linkage Maps

  • Devos et al. (1993)

  • Plaschke et al. (1993)

  • Plaschke et al. (1995)

  • Wanous and Gustafson (1995)

  • Wanous et al. (1995)

  • Korzun et al. (1996)

  • Loarce et al. (1996)

  • Senft and Wricke (1996)

  • Korzun et al. (1997)

  • Börner et al. (1998)

  • Korzun et al. (1998)

  • Voylokov et al. (1998)

Appendix 2

Wild Secale Nucleotide Sequence References (From: http://www.ncbi.nlm.nih.gov/)

8.2.1 Secale strictum

  • Aagesen L, Petersen G, Seberg O (2005) Sequence length variation, indel costs, and congruence in sensitivity analysis. Cladistics 21:15–30 (AY836181, AY836213)

  • Akopian TA, Vasil'ev SA, Ermishev VY, Zabrodina MV, Karyagina AS, Naroditsky BS, Khavkin EE (1999) Conserved fragments of MADS-box genes in perennial and annual rye Russ J Plant Physiol. Submitted (18-Jun-1999) Institute of Agricultural BioTechnology, 42 Timiryazevskaya St., Moscow 127550, Russia (AF159709, AF159712)

  • Alves E, Ballesteros I, Linacero R, Vázquez A M (2005) RYS1, a foldback transposon, is activated by tissue culture and shows preferential insertion points into the rye genome. Theor Appl Genet 111:431–436 (DQ075447, DQ075448, DQ075449, DQ075450)

  • Asay KH, Hsiao C, Chatterton NJ, Jensen KB, Wang RR (1992) Nucleotide sequence of the internal transcribed spacer region of rDNA in mountain rye, Secale montanum Guss. (Gramineae). Plant Mol Biol 20:161–162 (Z11760)

  • Bai L, Yang ZJ, Liu C, Feng J, Deng KJ, Ren ZL (2007) Structural and transcriptional polymorphism of mitochondrial rrn18-trnfM region in Triticeae species. Acta Agron Sin 33:805–813 (in Chinese with English abstr) (DQ307259)

  • Catalan P, Kellogg EA, Olmstead RG (1997) Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndh gene sequences. Mol Phylogenet Evol 8:150–166 (U71023)

  • Chen QJ, Yuan ZW, Zhang LQ, Yan ZH, Xiang ZG, Wan YF, Zheng YL, Liu DC (2008) Molecular characterization and comparative analysis of four new genes from Sec2 locus encoding 75K gamma-secalins of rye species. J Cereal Sci 48:111–116 (EF432549)

  • Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 109:34–42 (AJ517293)

  • de Bustos A, Jouve N (2002) Phylogenetic relationships of the genus Secale based on the characterisation of rDNA ITS sequences. Plant Syst Evol 235:147–154 (AJ409205–AJ409209, AJ409213)

  • Ermishev VY, Naroditsky BS, Khavkin EE Two MADS-box sequences within rye retrotransposons. Unpublished: Submitted (02-JAN-2001 and 07-FEB-2001) Institute of Agricultural Biotechnology, 42 Timiryazevskaya ul., Moscow 127550, Russia (AF332886, AF346894)

  • Ermishev VY, Naroditsky BS, Khavkin EE (2002) A fragment of chloroplast RNA polymerase gene rpoC2 in perennial and annual rye. Russ J Plant Physiol 49:387–392 (AF277721)

  • Helfgott DM, Mason-Gamer RJ (2004) The Evolution of North American Elymus (Triticeae, Poaceae) Allotetraploids: Evidence from Phosphoenolpyruvate Carboxylase Gene Sequences. Syst Bot 29:850–861 (AY548428, AY548430, AY553265, AY553267)

  • Hsiao C, Chatterton NJ, Asay KH, Jensen KB (1995) Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38:211–223 (L36503)

  • Jia J, Yang Z, Li G, Liu C, Lei M, Zhang T, zhou J, Ren Z (2009) Isolation and chromosomal distribution of a novel Ty1-copia-like sequence from Secale, which enables identification of wheat-Secale africanum introgression lines. J Appl Genet 50:25–28 (EU360795)

  • Jiang Q, Wei Y, Wang J, Yan Z, ZhengY Phylogenetic analysis of Triticeae Poaceae based on the sequences of y-type high-molecular-weigh glutenin promoter (y-HGP). Unpublished: Submitted (31-JUL-2007) Sichuan Agricultural University, Triticeae Research Institute, Xinkang Road, No. 46, Ya'an, Sichuan 625014, China (EU074254)

  • Kishii M, Tsujimoto H. Evolution of TaiI-family tandem repetitive sequence in Triticeae. Unpublished: Submitted (07-JAN-2002) Masahiro Kishii, Kihara Institute for Biological Research, Evolutional Genetics Division; Maioka-cho 641-12, Yokohama, Kanagawa 244-0813, Japan (AB077248)

  • Liu C, Yang Z, Ren Z. Foundation, Mapping and Application of a New Repeated DNA Sequence Similar to Sukkula For Rye Genome. Unpublished: Submitted (26-JUL-2006) University of Electronic Science and Technology of China, School of Life Science and Technology, No. 4 jianshe road, Chengdu, Sichuan 610054, China PR (DQ868363)

  • Liu C, Yang Z, Li GR, Feng J, Deng KJ, Huang J, Ren Z (2006) Sequence variation of chloroplast gene infA- rp136 region occurred in some Triticeae species. Heretitas (Beijing) 28(10):1265–1272 (in Chinese with English abstr) (DQ268508)

  • Mason-Gamer R J (2001) Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. Syst Bot 26:757–768 (AY011008)

  • Mason-Gamer RJ (2007) The beta-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae). Am J Bot 92:1045–1058 (AY821722, AY821725)

  • Mason-Gamer RJ, Weil CF, Kellogg EA (1998) Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Biol Evol 15:1658–1673 (AF079282)

  • Mason-Gamer RJ, Orme NL, Anderson CM (2002) Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45:991–1002 (AY115960, AY115962, AF519161, AF519163)

  • Petersen G, Seberg O (1997) Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. Mol Phylogenet Evol 7:217–230 (Z77765)

  • Petersen G, Seberg O (2000) Phylogenetic evidence for excision of Stowaway miniature inverted-repeat transposable elements in triticeae (Poaceae). Mol Biol Evol 17:1589–1596 (AF277248)

  • Petersen G, Seberg O, Aagesen L, Frederiksen S (2004) An empirical test of the treatment of indels during optimization alignment based on the phylogeny of the genus Secale (Poaceae). Mol Phylogenet Evol 30:733–742 (AY011008, AY294166–AY294169)

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A-, B-, and D- genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82 (DQ247899)

  • Sallares R, Brown TA. Phylogenetic analysis of complete external transcribed spacers of 26S-18S rDNA of diploid Aegilops and related species (Triticeae, Poaceae). Unpublished: Submitted (18-JUN-2001) Sallares R., Biomolecular Sciences, UMIST, PO Box 88, Manchester M60 1QD, M60 1QD, UK (AJ315034, AJ315035)

  • Scoles GJ, Gill BS, Xin ZY, Clarke BC, McIntyre CL, Chapman C, Appels R (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae Plant Syst Evol 160:105–122. Also: Baum BR, Appels R (1992) Evolutionary change at the 5S DNA loci of species in the Triticeae Plant Syst Evol 183: 195–208 (Z11442, Z11443)

  • Shang HY, Baum BR, Wei YM, Zheng YL (2007) 5S rRNA gene diversity in the genus Secale and which are its closest haplomes. Genet Resour Crop Ev 54: 793–806 (AY841099– AY841105, AY841107– AY841121, AY862424– AY862432)

  • Skuza L, Rogalska SM, Bocianowski J (2007) Mitochondrial DNA analysis of several rye species RFLP analysis of mitochondrial DNA in the genus Secale. Acta Biologica Cracoviensia/Botanica 49:77–87 (DQ401027, EU391539)

  • Wang RRC. Comparisons of F03-1270 family repetitive sequences from Secale cereale and S. montanum (Triticeae). Unpublished (2007) Forage and Range Research Laboratory, USDA-ARS, 695 N 1100 E, Logan, UT 84322-6300, USA. (BV722034–BV722061)

  • Zaitsev VS, Naroditsky BS, Khavkin EE. Unpublished: Submitted (09-NOV-2000) Institute of Agricultural Biotechnology, 42 Timiryazevskaya ul., Moscow 127550, Russia. (AF320290)

  • Zeng ZX, Liu C and Yang ZJ Finding of Stowaway MITE-like transposon sequence in the genome of Secale africanum. Unpublished: Submitted (12-DEC-2006) School of Life Science and Technology, University of Eletronic Science and Technology of China, JianShe North Road No.2, Chengdu, Sichuan 610000, PR China (EF179135)

  • Zeng X, Yang Z, Li G, Lei MP, Jia JQ, Ren ZL (2008) Development and application of a genome specific marker for Secale africanum. Hereditas (Beijing) 30(8):1056–1062. (in Chinese with English abstr) (EU295490)

  • Zeng ZX, Yang ZJ, Ren ZL. Unpublished: Submitted (19-MAY-2008) Molecular Cellular Biological Lab, UESTC, 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, PR China (EU730693)

8.2.2 Secale Sylvestre

  • Bai L, Yang ZJ, Liu C, Feng J, Deng KJ, Ren ZL (2007) Structural and transcriptional polymorphism of mitochondrial rrn18-trnfM region in Triticeae species. Acta Agron Sin 33:805–813 (in Chinese with English abstr) (DQ307272)

  • Chen QJ, Yuan ZW, Zhang LQ, Yan ZH, Xiang ZG, Wan YF, Zheng YL, Liu DC (2008) Molecular characterization and comparative analysis of four new genes from Sec2 locus encoding 75K gamma-secalins of rye species. J Cereal Sci 48:111–116 (EF432546)

  • de Bustos A and Jouve N (2002) Phylogenetic relationships of the genus Secale based on the character isation of rDNA ITS sequences. Plant Syst Evol 235:147–154 (AJ409210–AJ409212)

  • Doering E, Schneider J, Hilu KW, Roeser M (2007) Phylogenetic relationships in the Aveneae/Poeae complex (Pooideae, Poaceae) Kew Bull 62: 407–424. (AM234581)

  • Jiang Q, Wei Y, Wang J, Yan Z, Zheng Y. Phylogenetic analysis of Triticeae Poaceae based on the sequences of y-type high-molecular-weigh glutenin promoter (y-HGP). Unpublished: Submitted (31-JUL-2007) Sichuan Agricultural University, Triticeae Research Institute, Xinkang Road, No. 46, Ya'an, Sichuan 625014, China (EU074255)

  • Liu C, Yang Z, Li GR, Feng J, Deng KJ, Huang J, Ren Z (2006) Sequence variation of chloroplast gene infA- rp136 region occurred in some Triticeae species. Heretitas (Beijing) 28(10):1265–1272 (in Chinese with English abstr) (DQ257630)

  • Petersen G, Seberg O, Aagesen L, Frederiksen S (2004) An empirical test of the treatment of indels during optimization alignment based on the phylogeny of the genus Secale (Poaceae). Mol Phylogenet Evol 30:733–742 (AY294170)

  • Scoles GJ, Gill BS, Xin ZY, Clarke BC, McIntyre CL, Chapman C, Appels R (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Plant Syst Evol 160:105–122. Also: Baum BR, Appels R (1992) Evolutionary change at the 5S DNA loci of species in the Triticeae Plant Syst Evol 183: 195–208 (Z11444, Z11445)

  • Shang HY, Wei YM, Long H, Yan ZH, Zheng YL (2005) Identification of LMW Glutenin Like Genes from Secale sylvestre Host. Russ J Genet. 41: 1372–1380 (AY829368– AY829370)

  • Shang HY, Baum BR, Wei YM, Zheng YL (2007) 5S rRNA gene diversity in the genus Secale and which are its closest haplomes. Genet Resour Crop Ev 54: 793–806 (AY841088– AY841098)

  • Tomita M, Shinohara K, Morimoto M (2008) Revolver is a new class of transposon-like gene composing the Triticeae genome. DNA Res 15:49–62 (AB304271, AB304272)

  • Yamane K, Kawahara T (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species based on base- pair substitutions, indels, and microsatellites in chloroplast non-coding sequences. Am J Bot: in press (AB207328, AB207451, AB207574, AB207697)

  • Zhou J, Yang Z, Feng J, Chi SH, Liu C, Ren Z (2006) Cloning and analysis of gene encoding wheat translation initiation factor, eIF5A. Hereditas (Beijing) 28:571–577 (in Chinese with English abstr) (DQ167201-DQ167203)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, Z.X. et al. (2011). Secale. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14228-4_8

Download citation

Publish with us

Policies and ethics