Skip to main content
Log in

Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus

  • ORIGINAL ARTICLE
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We characterized a novel blast resistance gene Pi50 at the Pi2/9 locus; Pi50 is derived from functional divergence of duplicated genes. The unique features of Pi50 should facilitate its use in rice breeding and improve our understanding of the evolution of resistance specificities.

Abstract

Rice blast disease, caused by the fungal pathogen Magnaporthe oryzae, poses constant, major threats to stable rice production worldwide. The deployment of broad-spectrum resistance (R) genes provides the most effective and economical means for disease control. In this study, we characterize the broad-spectrum R gene Pi50 at the Pi2/9 locus, which is embedded within a tandem cluster of 12 genes encoding proteins with nucleotide-binding site and leucine-rich repeat (NBS–LRR) domains. In contrast with other Pi2/9 locus, the Pi50 cluster contains four duplicated genes (Pi50_NBS4_1 to 4) with extremely high nucleotide sequence similarity. Moreover, these duplicated genes encode two kinds of proteins (Pi50_NBS4_1/2 and Pi50_NBS4_3/4) that differ by four amino acids. Complementation tests and resistance spectrum analyses revealed that Pi50_NBS4_1/2, not Pi50_NBS4_3/4, control the novel resistance specificity as observed in the Pi50 near isogenic line, NIL-e1. Pi50 shares greater than 96 % amino acid sequence identity with each of three other R proteins, i.e., Pi9, Piz-t, and Pi2, and has amino acid changes predominantly within the LRR region. The identification of Pi50 with its novel resistance specificity will facilitate the dissection of mechanisms behind the divergence and evolution of different resistance specificities at the Pi2/9 locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ameline-Torregrosa C, Wang B, O’Bleness M, Deshpande S, Zhu H, Roe B, Young N, Cannon S (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai J, Pennill L, Ning J, Lee S, Ramalingam J, Webb C, Zhao B, Sun Q, Nelson J, Leach J, Hulbert S (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bakker E, Toomajian C, Kreitman M, Bergelson J (2006) A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell 18:1803–1818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Ronald P (2011) Innate immunity in rice. Trends Plant Sci 16:451–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Han Z, Jiang H, Tian D, Yang S (2010) Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives. J Mol Evol 70:137–148

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Wu J, Li X, Wang X, Liu X, Jantasuriyarat C, Kudrna D, Yu Y, Wing R, Han B, Zhou B, Wang G (2010) Genomic structure and evolution of the Pi2/9 locus in wild rice species. Theor Appl Genet 121:295–309

    Article  CAS  PubMed  Google Scholar 

  • Davies PA, Gray G (2002) Long-range PCR. Methods Mol Biol 187:51–55

    CAS  PubMed  Google Scholar 

  • Deng Y, Zhu X, Shen Y, He Z (2006) Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet 113:705–713

    Article  CAS  PubMed  Google Scholar 

  • Dodds P, Lawrence G, Catanzariti A, Teh T, Wang C, Ayliffe M, Kobe B, Ellis J (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:8888–8893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellis J, Lawrence G, Luck J, Dodds P (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellis J, Lagudah E, Spielmeyer W, Dodds P (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641

    Article  PubMed Central  PubMed  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka S, Mizobuchi R, Saka N, Suprun I, Matsumoto T, Okuno K, Yano M (2012) A multiple gene complex on rice chromosome 4 is involved in durable resistance to rice blast. Theor Appl Genet 125:551–559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Hulbert S, Webb C, Smith S, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  CAS  PubMed  Google Scholar 

  • Jeung J, Kim B, Cho Y, Han S, Moon H, Lee Y, Jena K (2007) A novel gene, Pi40(t), linked to the DNA markers derived from NBS–LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet 115:1163–1177

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Li Z, Wu J, Wang Y, Wu L, Wang S, Wang D, Wen T, Liang Y, Sun P, Liu J, Dai L, Wang Z, Wang C, Luo M, Liu X, Wang G (2012) Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad-spectrum resistance to Magnaporthe oryzae in the rice cultivar Jefferson. Rice 5:29

    Article  Google Scholar 

  • Jones J, Dangl J (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jung Y, Agrawal G, Rakwal R, Kim J, Lee M, Choi P, Kim Y, Kim M, Shibato J, Kim S, Iwahashi H, Jwa N (2006) Functional characterization of OsRacB GTPase–a potentially negative regulator of basal disease resistance in rice. Plant Physiol Biochem 44:68–77

    Article  CAS  PubMed  Google Scholar 

  • Jupe F, Pritchard L, Etherington G, Mackenzie K, Cock P, Wright F, Sharma S, Bolser D, Bryan G, Jones J, Hein I (2012) Identification and localization of the NB-LRR gene family within the potato genome. BMC Genom 13:75

    Article  CAS  Google Scholar 

  • Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72:894–907

    CAS  PubMed  Google Scholar 

  • Karasov T, Kniskern J, Gao L, DeYoung B, Ding J, Dubiella U, Lastra R, Nallu S, Roux F, Innes R, Barrett L, Hudson R, Bergelson J (2014) The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature 512:436–440

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers B, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636

    Article  CAS  PubMed  Google Scholar 

  • Kuang H, Woo S, Meyers B, Nevo E, Michelmore R (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870–2894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuang H, Caldwell K, Meyers B, Michelmore R (2008) Frequent sequence exchanges between homologs of RPP8 in Arabidopsis are not necessarily associated with genomic proximity. Plant J 54:69–80

    Article  CAS  PubMed  Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene. Trends Genet 20:116–122

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22:411–420

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q (2007) The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu G, Lu G, Zeng L, Wang G (2002) Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics 267:472–480

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Liu J, Triplett L, Leach J, Wang G (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241

    Article  CAS  PubMed  Google Scholar 

  • Luck J, Lawrence G, Dodds P, Shepherd K, Ellis J (2000) Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell 12:1367–1377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo S, Zhang Y, Hu Q, Chen J, Li K, Lu C, Liu H, Wang W, Kuang H (2012) Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. Plant Physiol 159:197–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhou K, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J (2015) Pi64, encoding a novel CC–NBS–LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant Microbe Interact (Epub ahead of print)

  • Marone D, Russo M, Laido G, De Leonardis A, Mastrangelo A (2013) Plant nucleotide binding site-leucine-rich repeat (NBS–LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin G, Bogdanove A, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  • Meyers B, Kozik A, Griego A, Kuang H, Michelmore R (2003) Genome-wide analysis of NBS–LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michelmore R, Meyers B (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    CAS  PubMed  Google Scholar 

  • Mondragon-Palomino M, Gaut B (2005) Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Mol Biol Evol 22:2444–2456

    Article  CAS  PubMed  Google Scholar 

  • Moytri R, Jia Y, Richard DC (2012) Structure, function, and co-evolution of rice blast resistance genes. Acta Agron Sin 38:381–393

    Article  CAS  Google Scholar 

  • Nguyen T, Koizumi S, La T, Zenbayashi K, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A (2006) Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet 113:697–704

    Article  CAS  PubMed  Google Scholar 

  • Ou S (1985) Rice disease. Second Edition, Commonwealth Mycological Institute, Kew Surrey, The Cambrian News Ltd, UK, pp 109–201

  • Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ravensdale M, Bernoux M, Ve T, Kobe B, Thrall P, Ellis J, Dodds P (2012) Intramolecular interaction influences binding of the Flax L5 and L6 resistance proteins to their AvrL567 ligands. PLoS Pathog 8:e1003004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richter T, Ronald P (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Collins N, Ayliffe M, Smith S, Drake J, Pryor T, Hulbert S (2001) Recombination between paralogues at the Rp1 rust resistance locus in maize. Genetics 158:423–438

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10:175

    Article  PubMed Central  PubMed  Google Scholar 

  • Tan S, Wu S (2012) Genome Wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genomics 2012:418208

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang W, Su J, Zhang J, Li Y, Chen S, Zeng L, Yang J, Zhu X (2012a) Pathogenicity analysis of the rice blast fungus isolated from the blast panicles of Yuejingsimiao 2. Guangdong Agric Sin 23:59–61 (in Chinese)

    CAS  Google Scholar 

  • Wang Y, Wang D, Deng X, Liu J, Sun P, Liu Y, Huang H, Jiang N, Kang H, Ning Y, Wang Z, Xiao Y, Liu X, Liu E, Dai L, Wang G (2012b) Molecular mapping of the blast resistance genes Pi2-1 and Pi51(t) in the durably resistant rice ‘Tianjingyeshengdao’. Phytopathology 102:779–786

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Xu T, Guo C, Zhang X, Yang S (2012) Heterogeneous evolutionary rates of Pi2/9 homologs in rice. BMC Genet 13:73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu W, Wang L, Zhang S, Li Z, Zhang Y, Lin F, Pan Q (2014) Stepwise arms race between AvrPik and Pik alleles in the rice blast pathosystem. Mol Plant Microbe Interact 27:759–769

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li J, Li C, Song M, Cumagun C, Deng Q, Lu G, Jeon J, Naqvi N, Zhou B (2015) Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. N Phytol. doi:10.1111/nph.13310 (Epub ahead of print)

    Google Scholar 

  • Xu X, Lv Q, Shang J, Pang Z, Zhou Z, Wang J, Jiang G, Tao Y, Xu Q, Li X, Zhao X, Li S, Xu J, Zhu L (2014) Excavation of Pid3 orthologs with differential resistance spectra to Magnaporthe oryzae in rice resource. PLoS One 9:e93275

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang J, Chen S, Zeng L, Li Y, Chen Z, Li C, Zhu X (2008) Race specificity of major rice blast resistance genes to Magnaporthe grisea isolates collected from indica Rice in Guangdong, China. Rice Sci 15:311–318

    Article  Google Scholar 

  • Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC–NBS–LRR genes. Theor Appl Genet 122:1017–1028

    Article  PubMed  Google Scholar 

  • Yue J, Meyers B, Chen J, Tian D, Yang S (2012) Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS–LRR) genes. N Phytol 193:1049–1063

    Article  CAS  Google Scholar 

  • Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. N Phytol 189:321–334

    Article  CAS  Google Scholar 

  • Zhou T, Wang Y, Chen J, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS–LRR genes. Mol Genet Genomics 271:402–415

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact 19:1216–1228

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Dolan M, Sakai H, Wang G (2007) The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Mol Plant Microbe Interact 20:63–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Yang J, Chen Y, Yang W, Chen X, Zeng L, Chen S (2008) Race identification and pathogenicity test of the blast fungus causing the resistance breakdown of hybrid rice Tianyou 998. Guangdong Agric Sin 12:84–86 (in Chinese)

    Google Scholar 

  • Zhu X, Chen S, Yang J, Zhou S, Zeng L, Han J, Su J, Wang L, Pan Q (2012) The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet 124:1295–1304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Y. L. Peng and S. Q. Wu for providing rice blast isolates. This research is supported by grants from the National Transgenic Research Projects (2014ZX0800904B), the National Natural Science Foundation (31301304, 31461143019), the Guangzhou sciences and technology project (2012J2200066, 2012J4300059), Earmarked Fund for Modern Agro-Industry Technology Research System (CARS-01-24).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhou or Xiaoyuan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by M. Thomson.

J. Su and W. Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2015_2579_MOESM1_ESM.pdf

Supplementary Fig. S1 Pairwise comparison of Pi50_NBS4_1 respectively with Pi50_NBS4_3 (top panel) and Pi50_NBS2 (lower panel). The sequence alignment was conducted using BLAST2 (http://www.ncbi.nlm.nih.gov) and the graphic summary was captured in scale. The sequence of Pi50_NBS4_1 was used as the subject for each comparison. The promoter/exon/intron are indicated corresponding to their positions

122_2015_2579_MOESM2_ESM.pdf

Supplementary Fig. S2 Overall good synteny with respect to gene order and composition between the Pi2 and Pi50 loci. The X-axis displays the genomic context of NBS–LRR genes at the Pi50 locus and the Y-axis displays the one at the Pi2 locus. The pseudomolecule of the Pi50 locus is composed of three fragments, i.e., the NIP side (GenBank accession no. KP985759), the central genomic block (GenBank accession no. KP985761), and the PK side (GenBank accession no. KP985760) was compared to the sequence of the Pi2 locus (GenBank accession no. DQ352453) using BLAST2. Nine orthologous groups (Pi50_NBS1-4, Pi50_NBS8-12) each indicated in different colors are named only for the Pi50 locus as an example. (PDF 54 kb)

122_2015_2579_MOESM3_ESM.pdf

Supplementary Fig. S3 Phylogenetic analysis of different NBS–LRR genes at the Pi2/9 locus. Pi2_NBS4, Pi9_NBS3, and Piz-t_NBS4 correspond to functional genes Pi2, Pi9, and Piz-t respectively. The Pi2/9 homologues in Nipponbare were named with the clone name AP005659. The tree was constructed using a neighbor-joining algorithm based on the predicted full-length sequence of proteins. Numbers on the branches indicate the percentage of 1000 bootstrap replicates. The unit branch length is equivalent to 0.1 amino acid substitutions per site, as indicated by the bar at the upper left corner. (PDF 24 kb) (PDF 13 kb)

Supplementary material 4 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Wang, W., Han, J. et al. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet 128, 2213–2225 (2015). https://doi.org/10.1007/s00122-015-2579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2579-9

Keywords

Navigation