Skip to main content
Log in

The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We report the isolation of Pi1, a gene conferring broad-spectrum resistance to rice blast (Magnaporthe oryzae). Using loss- and gain-of-function approaches, we demonstrate that Pi1 is an allele at the Pik locus. Like other alleles at this locus, Pi1 consists of two genes. A functional nucleotide polymorphism (FNP) was identified that allows differentiation of Pi1 from other Pik alleles and other non-Pik genes. A extensive germplasm survey using this FNP reveals that Pi1 is a rare allele in germplasm collections and one that has conferred durable resistance to a broad spectrum of pathogen isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci 108:11034–11039

    Article  PubMed  CAS  Google Scholar 

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Pennill LA, Ning J, Lee S, Ramalingam J, Webb C, Zhao B, Sun Q (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M, Yahiaoui N, Keller B (2010) Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J 64:433–445

    Article  PubMed  CAS  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulzelefert P (1997) The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506

    PubMed  CAS  Google Scholar 

  • Fuentes JL, Correa-Victoria FJ, Escobar F, Prado G, Aricapa G, Duque MC, Tohme J (2008) Identification of microsatellite markers linked to the blast resistance gene Pi-1(t) in rice. Euphytica 160:295–304

    Article  CAS  Google Scholar 

  • Gross BL, Steffen FT, Olsen KM (2010) The molecular basis of white pericarps in African domesticated rice: novel mutations at the Rc gene. Evol Biol 23:2747–2753

    Article  CAS  Google Scholar 

  • Hausner G, Rashid KY, Kenaschuk EO, Procunier JD (1999) The development of codominant PCR/RFLP based markers for the flax rust-resistance alleles at the L locus. Genome 42:1–8

    Article  CAS  Google Scholar 

  • Hayashi K, Hashimoto N, Daigen M, Ashikawa I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108:1212–1220

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Yasuda N, Fujita Y, Koizumi S, Yoshida H (2010) Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor Appl Genet 121:1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Hittalmani S, Parco A, Mew TV, Zeigler RS (2000) Fine mapping and DNA marker-assisted pyramiding of three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

    Article  CAS  Google Scholar 

  • Holub EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Cenet 2:516–527

    Article  CAS  Google Scholar 

  • Hu J, Li X, Wu C (2010) Gene pyramiding to improve the resistance of rice hybrids to brown planthopper and blast disease using molecular marker-assisted selection. Mol Plant Breed 8:1180–1187 (in Chinese)

    CAS  Google Scholar 

  • Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320

    Article  CAS  Google Scholar 

  • Inukai T, Nelson RJ, Zeigler RS, Sarkarung S, Mackill DJ, Bonman JM, Takamure I, Kinoshita T (1994) Allelism of blast resistance genes in near-isogenic lines of rice. Phytopathology 84:1278–1283

    Article  Google Scholar 

  • Khush GS, Jena KK (2009) Current status and future prospects for research on blast resistance in rice (Oryza sative L.). In: Wang GL, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer, Dordrecht, pp 1–10

    Chapter  Google Scholar 

  • Kiyosawa S (1987) With genetic view on the mechanism of resistance and virulence. Jpn J Genet 41:89–92

    Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Costanzo S, Jia Y, Olsen KM, Caicedo AL (2009) Evolutionary dynamics of the genomic region around the blast resistance gene Pi-ta in AA genome Oryza species. Genetics 183:1315–1325

    Article  PubMed  CAS  Google Scholar 

  • Li J, Li C, Chen Y, Lei C, Ling Z (2005) Evaluation of twenty-two blast resistance genes in Yunnan using monogenetic rice lines. Acta Phytophylacica Sin 32:113–119 (in Chinese)

    CAS  Google Scholar 

  • Li L, Wang L, Jing J, Li Z, Lin F, Pan Q (2007) The Pikm gene, conferring stable resistance to isolates of Magnaporthe oryzae was finely mapped in a crossover-cold region on rice chromosome 11. Mol Breed 20:179–188

    Article  CAS  Google Scholar 

  • Linares OF (2002) African rice (Oryza glaberrima): history and future potential. Proc Natl Acad Sci 99:16360–16365

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Wang X, Mitchell T, Hu Y, Liu X, Dai L, Wang GL (2010) Recent progress and understanding of the molecular mechanisms of the rice–Magnaporthe oryzae interaction. Mol Plant Pathol 11:419–427

    Article  PubMed  CAS  Google Scholar 

  • Mackill DJ, Bonman LM (1992) Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology 82:746–749

    Article  Google Scholar 

  • Pan Q, Hu Z, Tanisaka T, Wang L (2003) Fine mapping of the blast resistance gene Pi15, linked to Pii, on rice chromosome 9. Acta Bot Sin 45:871–877

    CAS  Google Scholar 

  • Perumalsamy S, Bharani M, Sudha M, Nagarajan P, Arul L, Saraswathi R, Balasubramanian P, Ramalingam J (2010) Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.). Plant Breed 129:400–406

    CAS  Google Scholar 

  • Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rice repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    Article  PubMed  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trend Biotechnol 27:141–150

    Article  CAS  Google Scholar 

  • Tacconi G, Baldassarre V, Lanzanova C, Faivre-Rampant O, Cavigiolo S, Urso S, Lupotto E, Valè G (2010) Polymorphism analysis of genomic regions associated with broad-spectrum effective blast resistance genes for marker development in rice. Mol Breed 26:595–617

    Article  Google Scholar 

  • Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114:165–175

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Song WY, Ruan DL, Sideris S, Ronald PC (1996) The closed gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant Microbe Interact 9:850–855

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Xu X, Lin F, Pan Q (2009) Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus. Phytopathology 99:900–905

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Hayashi N, Wang CT, Kato H, Fujimura T, Kawasaki S (2008) Efficient authentic fine mapping of the rice blast resistance gene Pik-h in the Pik cluster, using new Pik-h-differentiating isolates. Mol Breed 22:289–299

    Article  CAS  Google Scholar 

  • Yang X, Zhu C, Ruan H, Du Y, Guan R, Chen F (2008) Pathogenic types of Magnaporthe grisea Barr. and resistance of some rice cultivars to the pathogens in Fujian province. J Fujian Agr Fore Uni 37:243–247 (in Chinese)

    CAS  Google Scholar 

  • Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122:1017–1028

    Article  PubMed  Google Scholar 

  • Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Ma J, Xiao J, Liu Y, Xin A, Ren Y (2010) The blast resistance of 24 monogenic rice lines to prevalence physiologic races of Heilongjiang and analysis of pathogenicity association. Chi Agr Sci Bull 26:233–237 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We thank Z. Wang (Fujian Agricultural University), Z. Zhao (Hunan Province Agricultural Academy of Sciences), D. Lu (Sichuan Province Agricultural Academy Sciences), J. Yuan (Guizhou Province Agricultural Academy of Sciences), Z. Liu (Shenyang Agricultural University), X. Guo (Jilin Province Agricultural Academy of Sciences) and G. Zhang (Heilongjiang Province Agricultural Academy of Sciences) for providing blast isolates. This study was supported by the Chinese National Natural Science Foundation (U1131003), the National 973 project (2011CB1007) and the National Transgenic Research Projects (2009ZX08009-023B; 2011ZX08001-002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Wang or Qinghua Pan.

Additional information

Communicated by P. Hayes.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, L., Wu, J., Chen, C. et al. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125, 1047–1055 (2012). https://doi.org/10.1007/s00122-012-1894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1894-7

Keywords

Navigation