Skip to main content
Log in

Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Identified DArT and SNP markers including a first reported QTL on 3AS, validated large effect APR on 3BS. The different genes can be used to incorporate stripe resistance in cultivated varieties.

Abstract

Stripe rust [yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst)] is a serious disease in wheat (Triticum aestivum). This study employed genome-wide association mapping (GWAM) to identify markers linked to stripe rust resistance genes using Diversity Arrays Technology (DArT®) and single-nucleotide polymorphism (SNP) Infinium 9K assays in 200 ICARDA wheat genotypes, phenotyped for seedling and adult plant resistance in two sites over two growing seasons in Syria. Only 25.8 % of the genotypes showed resistance at seedling stage while about 33 and 44 % showed moderate resistance and resistance response, respectively. Mixed-linear model adjusted for false discovery rate at p < 0.05 identified 12 DArT and 29 SNP markers on chromosome arms 3AS, 3AL, 1AL, 2AL, 2BS, 2BL, 3BS, 3BL, 5BL, 6AL, and 7DS significantly linked to Pst resistance genes. Of these, the locus on 3AS has not been previously reported to confer resistance to stripe rust in wheat. The QTL on 3AS, 3AL, 1AL, 2AL, and 2BS were effective at seedling and adult plant growth stages while those on 3BS, 3BL, 5BL, 6AL and 7DS were effective at adult plant stage. The 3BS QTL was validated in Cham-6 × Cham-8 recombinant inbred line population; composite interval analysis identified a stripe resistance QTL flanked by the DArT marker, wPt-798970, contributed by Cham-6 parent which accounted for 31.2 % of the phenotypic variation. The DArT marker “wPt-798970” lies 1.6 cM away from the 3BS QTL detected within GWAM. Epistatic interactions were also investigated; only the QTL on 1AL, 3AS and 6AL exhibited interactions with other loci. These results suggest that GWAM can be an effective approach for identifying and improving resistance to stripe rust in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APR:

Adult plant resistance

CIMMYT:

International Maize and Wheat Improvement Center

cM:

Centimorgan

DArT:

Diversity array technology

GWAM:

Genome-wide association mapping

ICARDA:

International Center for Agricultural Research in the Dry Areas

LD:

Linkage disequilibrium

MAF:

Minor allele frequency

MLM:

Mixed linear model

QTL:

Quantitative trait loci

SSR:

Simple sequence repeat

SNP:

Single nucleotide polymorphism

Yr:

Stripe rust

References

  • Andreescu C, Avendano S, Brown SR, Hassen A, Lamont SJ, Dekkers JCM (2007) Linkage disequilibrium in related breeding lines of chickens. Genetics 177:2161–2169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bansal UK, Hayden MJ, Keller B, Wellings CR, Park RF, Bariana HS (2009) Relationship between wheat rust resistance genes Yr1 and Sr48 and a microsatellite marker. Plant Pathol 58:1039–1043

    Article  CAS  Google Scholar 

  • Bariana HS, Willey NJ, Venkata BP, Lehmensiek A, Standen GE, Lu M (2004) Breeding methodology to achieve durability for rust resistance in wheat. In: Black CK, Panozzo JF, Rebetzke GJ (eds) Proceedings of the 54th Australian cereal chemistry conference and 11th wheat breeders assembly, Canberra, pp 8–12

  • Bariana HS, Bansal UK, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre CL (2010) Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176:251–260

    Article  CAS  Google Scholar 

  • Börner A, Röder MS, Unger O, Meinel A (2000) The detection and molecular mapping of a major resistance gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Apppl Genet 100:1095–1099

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105(6–7):921–936

    PubMed  Google Scholar 

  • Boshoff WHP, Pretorius ZA, Niekerk BDV (2002) Establishment, distribution, and pathologenicity of Puccinia striiformis f. sp. tritici in South Africa. Plant Dis 86:485–492

    Article  Google Scholar 

  • Boukhatem N, Baret PV, Mingeot D, Jacquemin JM (2002) Quantitative trait loci for resistance against yellow rust in two wheat derive recombinant inbred line populations. Theor Appl Genet 104:111–118

    Article  CAS  PubMed  Google Scholar 

  • Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:232

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradbury JC, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells MS (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS 110(20):8057–8062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chao S, ZhangW Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Chen XM (2007) Challenges and solutions for stripe rust control in the United States. Aust J Agric Res 58:648–655

    Article  Google Scholar 

  • Chen XM (2013) Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 4:608–627

    Article  Google Scholar 

  • Cheng P, Xu LS, Wang MN, See DR, Chen XM (2014) Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet. doi:10.1007/s00122-014-2378-8

    Google Scholar 

  • Comstock RR, Robinson HF (1952) Genetic parameters, their estimation and significance. In: Proceedings of the 6th international Grassland congress, vol 1, pp 277–283

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 99:968–973

    Article  CAS  PubMed  Google Scholar 

  • Detering F, Hunter E, Uszynski G, Wenzl P, Andrzej K (2010) A consensus genetic map of wheat: ordering 5,000 wheat DArT markers. In: 20th ITMI and 2nd WGC workshop, Beijing, 1–5 September 2010

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics 4:59–66

    Article  CAS  PubMed  Google Scholar 

  • Dreisigacker S, Arief V, DeLacy I, Davenport G, Manes Y, Reynolds M, Ravi S, Dieters M, Crossa J (2008) Patterns of linkage disequilibrium in multiple populations. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of 11th international wheat genet symposium. Sydney University Press, Brisbane, pp 1–5

    Google Scholar 

  • Emebiri LC, Ogbonnaya FC (2015) Exploring the synthetic hexaploid wheat for novel sources of tolerance to excess boron. Mol Breed 35:68 doi:10.1007/s11032-015-0273-x

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Gill BS, Sharma HC, Raupp WJ, Browder LE, Hatchett JH, Harvey TL, Moseman GJ, Waines JG (1985) Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly and green bug. Plant Dis 69:314–316

    Google Scholar 

  • Hao Y, Cambron SE, Chen Z, Wang Y, Bland DE, Buntin GD, Johnson JW (2013) Characterization of new loci for Hessian fly resistance in common wheat. Theor Appl Genet 126(4):1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 198(117):331–374

    Google Scholar 

  • Johanson HW, Robinson F, Comstock RE (1955) Estimate of genetic and environmental variability in soybeans. Agron J 47:314–318

    Article  Google Scholar 

  • Johnson R (1992) Past, present and future opportunities in breeding for disease resistance, with examples from wheat. Euphytica 63:3–22

    Article  Google Scholar 

  • Johnson R, Stubbs RW, Fuchs E, Chamberlain NH (1972) Nomenclature for physiologic races of Puccinia striiformis infecting wheat. Trans Br Mycol Soc 58:475–480

    Article  Google Scholar 

  • Joukhadar R, El-Bouhssini M, Jighly A, Ogbonnaya FC (2013) Genome-wide association mapping for five major pest resistances in wheat. Mol Breed. doi:10.1007/s11032-013-9924-y

    Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed Central  PubMed  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E et al (2013) Genetic architecture of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in European winter wheat. Mol Breed 32(2):411–423

    Article  CAS  Google Scholar 

  • Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah ES (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci 48:1841–1852

    Article  CAS  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  CAS  PubMed  Google Scholar 

  • Larsson H, Källman T, Gyllenstrand N, Lascoux M (2013) Distribution of long-range linkage disequilibrium and Tajima’s D values in Scandinavian populations of Norway spruce (Picea abies). G3 3(5):795–806

  • Letta T, Olivera P, Maccaferri M, Jin Y, Ammar K, Badebo A, Salvi S, Noli E, Crossa J, Tuberosa R (2014) Association mapping reveals novel stem rust resistance loci in Durum wheat at the seedling stage. Plant Genome. doi:10.3835/plantgenome2013.08.0026

    Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Chen XM (2008) Molecular mapping of genes for race-specific overall resistance to stripe rust in wheat cultivar Express. Theor Appl Genet 116:797–806

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Chen XM (2009) Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor Appl Genet 118:631–642

    Article  CAS  PubMed  Google Scholar 

  • Lowe I, Jankuloski L, Chao S et al (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123:143–157

  • Lu YM, Lan CX, Linag SS, Zhou XC, Liu D, Zhou G, Lu QL, Jing JX, Wang MN, Xia XC, He ZH (2009) QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet 119:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of related with molecular markers. Genetics 152:1088–1753

  • Ma H, Singh RP (1996) Contribution of adult plant resistance gene Yr18 in protecting wheat from yellow rust. Plant Dis 80:66–69

    Article  Google Scholar 

  • Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, del Moral LG, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Shiaoman C, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivvum L.). Genes Genomes Genet (G3) 5:449–465

  • Mackay I, Powell W (2006) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  Google Scholar 

  • Marais GF, McCallum B, Marais AS (2006) Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 149(3):373–380

    Article  Google Scholar 

  • Marais GF, Marais AS, McCallum B, Pretorius Z (2009) Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci 49:871–879

    Article  CAS  Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Dill-Macky Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454

    Article  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, Victoria

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. In: 12th international wheat genetic symposium, 8–13 September 2013, Yokohama

  • Miedaner T, Wurschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2011) Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breed 28:647–655

    Article  Google Scholar 

  • Milus EA, Soyran E, McNew R (2006) Aggressive of Puccinia striiformis f. sp. tritici in eastern United States. Plant Dis 90:847–852

    Article  Google Scholar 

  • Mulki MA, Jighly A, Ye G, Emebiri LC, Moody D, Ansari O, Ogbonnaya FC (2013) Association mapping for soilborne pathogen resistance in synthetic hexaploid wheat. Mol Breed 3:299–311

    Article  Google Scholar 

  • Mumtaz S, Khan IA, Ali S, Zeb B, Iqbal A, Shah Z, Swati ZA (2009) Development of RAPD based markers for wheat rust resistance gene cluster (Lr37–Sr38–Yr17) derived from Triticum ventricosum L. Afr J Biotechnol 8(7):1188–1192

    CAS  Google Scholar 

  • Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 1:37–58

    Article  Google Scholar 

  • Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lopez-Brana I, Eastwood RF, Lagudah ES (2001) Molecular-genetic characterisation of a new nematode resistance gene in wheat. Theor Appl Genet 102:623–629

    Article  CAS  Google Scholar 

  • Pardey PG, Beddow JM, Kriticos DJ, Hurley TM, Park RF, Duveiller E, Sutherst RW, Burdon JJ, Hodson D (2013) Right-sizing stem-rust research. Science 340(6129):147–148

    Article  CAS  PubMed  Google Scholar 

  • Pathan AK, Park RF (2006) Evaluation of seedling and adult plant resistance to leaf rust in European wheat cultivars. Euphytica 149:327–342

    Article  CAS  Google Scholar 

  • Patterson N, Price A, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190

    Article  PubMed Central  PubMed  Google Scholar 

  • Peng JH, Fahima T, Roeder MS, Huang QY, Dahan A, Li YC, Grama A, Nevo E (2000) High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 109(3):199–210

    Article  CAS  PubMed  Google Scholar 

  • Price A, Patternson N, Plenge R, Weinblatt M, Shadick N et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11(7):459–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephen M, Donnely P (2000) Inference on population structure using multi-locus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramburan VP, Pretorius ZA, Louw JH, Boyd LA, Smith PH, Boshoff WHP, Prins R (2004) A genetic analysis of adult plant resistance to stripe rust in wheat cultivar Kariega. Theor Appl Genet 108:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Xia X, Ogbonnaya F, Mahmood T, Zhang Z, Mujeeb-Kazi A, He Z (2014) Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol 14:128

    Article  PubMed Central  PubMed  Google Scholar 

  • Ren Y, He ZH, Li J, Lillemo M, Wu L, Bai B, Lu QX, Zhu HZ, Zhou G, Du JY, Lu QL, Xia XC (2012) QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor Appl Genet 125:1211–1221

    Article  PubMed  Google Scholar 

  • Rincent R, Moreau L, Monod H, Kuhn E, Melchinger AE, Malvar RA, Moreno-Gonzalez J, Nicolas S, Madur D, Combes V, Dumas F, Altmann T, Brunel D, Ouzunova M, Flament P, Dubreuil P, Charcosset A, Mary-Huard T (2014) Recovering power in association mapping panels with variable levels of linkage disequilibrium. Genetics 197:375–387

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTL associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, HerreraFoessel SA, Singh RP, HuertaEspino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126(10):2427–2449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661. doi:10.1073/pnas.0606133103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roy JK, Smith KP, Muelbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243–256

    Article  PubMed Central  PubMed  Google Scholar 

  • Saari EE, Prescott JM (1985) World distribution in relation to economic losses. In: Roelfs AP, Bushnell WR (eds) The cereal rusts. vol II. Diseases, distribution, epidemiology and control, pp.259–298. Academic Press, Orlanda

  • Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B (2004a) Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet 108:477–484

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T, Bossolini E, Messmer M, Keller B (2004b) Tagging and validation of a major quantitative trait locus for leaf rust resistance and leaf tip necrosis in winter wheat cultivar Forno. Phytopathology 94:1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Sela H, Ezrati S, Ben-Yehuda P, Manisterski J, Akhunov E, Dvorak J, Breiman A, Korol A (2014) Linkage disequilibrium and association analysis of stripe rust resistance in wild emmer wheat (Triticum turgidum ssp. dicoccoides) population in Israel. Theor Appl Genet. doi:10.1007/s00122-014-2389-5

  • Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    Article  CAS  Google Scholar 

  • Singh D, Park RF, McIntosh RA, Bariana HS (2008) Characterisation of stem rust and stripe rust seedling resistance genes in selected wheat cultivars from the United Kingdom. J Plant Pathol 90(3):553–562

    Google Scholar 

  • Solh M, Nazari K, Tadesse W, Wellings CR (2012) The growing threat of stripe rust worldwide Borlaug global rust initiative (BGRI) conference, Beijing

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    Article  CAS  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Stich B, Melchinger AE (2009) Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis. BMC Genomics 10:9

    Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genome wide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  CAS  PubMed  Google Scholar 

  • Tadesse W, Ogbonnaya FC, Jighly A, Nazari K, Rajaram S, Baum M (2014) Association mapping of quantitative resistance to stripe rust (Pucinia tritici) in winter wheat cultivars and elite genotypes targeted to the CWANA region. Crop Sci 54(2):607–616

    Article  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  • Tondelli A, Xu X, Moragues M, Sharma R, Schnaithmann F, Ingvardsen C, Manninen O, Comadran J, Russell J, Waugh R, Schulman AH, Pillen K, Rasmussen SK, Kilian B, Cattivelli L, Thomas WTB, Flavell AJ (2013) Structural and temporal variation in genetic diversity of European spring two-row barley cultivars and association mapping of quantitative traits. Plant Genome 6:1–14. doi:10.3835/plantgenome2013.03.0007

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. In: Kyazma BV (ed), Wageningen

  • Van Ooijen JW (2009) MapQTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. In: Kyazma BV (ed), Wageningen

  • Vazquez MD, Peterson CJ, Riera-Lizarazu O, Chen X, Heesacker A, Ammar K, Crossa J, Mundt CC (2012) Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theor Appl Genet 124:1–11

    Article  CAS  Google Scholar 

  • Vinod KK (2011) Association mapping in crop plants. In: Advanced faculty training on “impact of genomics in crop improvement: perceived and achieved”, 20 January 2011–9 February 2011. Centre for Advanced Faculty Training in Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore

  • Wang H, Smith KP, Combs E, Blake T, Horsley RD, Muehlbaue GJ (2012) Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theor Appl Genet 124(1):111–124

    Article  CAS  PubMed  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete populations genetic data. Sinauer Associates, Sunderland

    Google Scholar 

  • Wellings CR, Wright DG, Keiper F, Loughman R (2003) First detection of wheat stripe rust in Western Australia: evidence for a foreign incursion. Australas Plant Pathol 32:321–322

    Article  Google Scholar 

  • William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990

    Article  CAS  PubMed  Google Scholar 

  • Yang WY, Yu Y, Zhang Y, Hu XR, Wang Y, Zhou YC, Lu BR (2003) Inheritance and expression of stripe rust resistance in common wheat (Triticum aestivum) transferred from Aegilops tauschii and its utilization. Hereditas 139:49–55

    Article  PubMed  Google Scholar 

  • Yang EN, Rosewarne GM, Herrera-Foessel SA, Huerta-Espino J, Tang ZX, Sun CF, Ren ZL, Singh RP (2013) QTL analysis of the spring wheat “Chapio” identifies stable stripe rust resistance despite inter-continental genotype × environment interactions. Theor Appl Genet 126(7):1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Yu LX, Lorenz A, Rutkoski J, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME (2011) Association mapping and gene–gene interaction for stem rust resistance in CIMMYT spring whear germplasm. Theor Appl Genet 123:1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Yu LX, Morgounov A, Wanyera R, Keser M, Singh SK, Sorrells ME (2012) Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theor Appl Genet 125(4):749–758

    Article  PubMed  Google Scholar 

  • Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC (2014) Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS One 9(8):e105593

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C et al (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou XL, Han DJ, Chen XM, Gou HL, Guo SJ, Rong L, Wang QL, Huang LL, Kang ZS (2014) Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theor Appl Genet. doi:10.1007/s00122-014-2381-0

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Grains Research and Development Corporation—ACT, Australia, the Generation Challenge Program, Mexico and the International Centre for Agricultural Research in the Dry Areas (ICARDA) for funding this work. The authors are also grateful to the two anonymous referees for their critical reading and constructive suggestions to the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis C. Ogbonnaya.

Additional information

Communicated by M. E. Sorrells.

A. Jighly and B. C. Oyiga contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2015_2504_MOESM1_ESM.ppt

Supplementary material 1 Figure S1 Pairwise intra-chromosomal LD of chromosomal arm 1BS showing a large LD block (PPT 284 kb)

122_2015_2504_MOESM2_ESM.ppt

Supplementary material 2 Figure S2 a The PCA results of the 197 elite lines using polymorphic DArT markers; b the PCA results of the 188 GWAS genotype panel using SNP markers. Genotypes were coloured according to the population structure results (PPT 125 kb)

122_2015_2504_MOESM3_ESM.ppt

Supplementary material 3 Figure S3 Decline of linkage disequilibrium (LD) estimated by R 2 against genetic distance in ICARDA elite wheat germplasm showing a scatter plot of estimates of R 2 for a pairs of DArT markers, b pairs of SNP markers, c pairs of both marker systems in significant LD across the wheat genome (PPT 335 kb)

122_2015_2504_MOESM4_ESM.pptx

Supplementary material 4 Figure S4 QQ plots for the p values from association analysis for stripe rust resistance using DArT in a Malkiyeh 2009, b Malkiyeh 2010, c Tel-Hadya 2010, d Tel-Hadya 2011; and SNP markers in e Malkiyeh 2009, f Malkiyeh 2010, g Tel-Hadya 2010, h Tel-Hadya 2011 (PPTX 336 kb)

122_2015_2504_MOESM5_ESM.docx

Supplementary material 5 Table S1 Genotypes pedigrees, phenotype and their correspondence sub-population using DArT and SNP marker systems (DOCX 23 kb)

122_2015_2504_MOESM6_ESM.xlsx

Supplementary material 6 Table S2. The haplotypes of the associated marker for the genotypes with common parents in their pedigrees (XLSX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jighly, A., Oyiga, B.C., Makdis, F. et al. Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. Theor Appl Genet 128, 1277–1295 (2015). https://doi.org/10.1007/s00122-015-2504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2504-2

Keywords

Navigation